Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1005

Question Number 108413    Answers: 1   Comments: 0

228x=87 find x

$$\mathrm{228}{x}=\mathrm{87}\:{find}\:{x} \\ $$

Question Number 108407    Answers: 1   Comments: 0

The sides AB, BC, CA of a triangleABC have 3, 4 and 5 interior points respectively on them. The total number of triangles that can be constructed by using these points as vertices is

$$\mathrm{The}\:\mathrm{sides}\:\mathrm{AB},\:\mathrm{BC},\:\mathrm{CA}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangleABC} \\ $$$$\mathrm{have}\:\mathrm{3},\:\mathrm{4}\:\mathrm{and}\:\mathrm{5}\:\mathrm{interior}\:\mathrm{points}\:\mathrm{respectively} \\ $$$$\mathrm{on}\:\mathrm{them}.\:\mathrm{The}\:\mathrm{total}\:\mathrm{number}\:\mathrm{of}\:\mathrm{triangles} \\ $$$$\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{constructed}\:\mathrm{by}\:\mathrm{using}\:\mathrm{these} \\ $$$$\mathrm{points}\:\mathrm{as}\:\mathrm{vertices}\:\mathrm{is} \\ $$

Question Number 108406    Answers: 1   Comments: 0

solve the differential equation y^′ −2e^x y=2e^x (√y)

$$ \\ $$$$ \\ $$$$\:\:\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{differential}} \\ $$$$\boldsymbol{{equation}}\: \\ $$$$\boldsymbol{{y}}^{'} −\mathrm{2}{e}^{{x}} \boldsymbol{{y}}=\mathrm{2}{e}^{{x}} \sqrt{\boldsymbol{{y}}} \\ $$

Question Number 108401    Answers: 2   Comments: 2

((bobhans)/(⋱⋰)) I=∫_0 ^(π/2) ln (a^2 cos^2 θ + b^2 sin^2 θ ) dθ ?

$$\:\:\:\frac{\boldsymbol{{bobhans}}}{\ddots\iddots} \\ $$$$\:{I}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\mathrm{ln}\:\left({a}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta\:+\:{b}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta\:\right)\:{d}\theta\:?\: \\ $$

Question Number 108399    Answers: 0   Comments: 2

Question Number 108391    Answers: 5   Comments: 0

((∡ BeMath ∡)/▽) I = ∫_0 ^π ((x dx)/(1+sin x))

$$\:\:\:\frac{\measuredangle\:\mathcal{B}{e}\mathcal{M}{ath}\:\measuredangle}{\bigtriangledown} \\ $$$${I}\:=\:\underset{\mathrm{0}} {\overset{\pi} {\int}}\:\frac{{x}\:{dx}}{\mathrm{1}+\mathrm{sin}\:{x}} \\ $$

Question Number 108389    Answers: 1   Comments: 0

Question Number 108384    Answers: 3   Comments: 0

(1)∫ ((√(sin x))/( (√(sin x)) + (√(cos x)))) dx ? (2) (d^2 y/dx^2 )−2(dy/dx) +y = e^x

$$\left(\mathrm{1}\right)\int\:\frac{\sqrt{\mathrm{sin}\:{x}}}{\:\sqrt{\mathrm{sin}\:{x}}\:+\:\sqrt{\mathrm{cos}\:{x}}}\:{dx}\:? \\ $$$$\left(\mathrm{2}\right)\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }−\mathrm{2}\frac{{dy}}{{dx}}\:+{y}\:=\:{e}^{{x}} \\ $$

Question Number 108382    Answers: 2   Comments: 1

((bobhans)/(⋰⋱)) ∫_(π/2) ^π ∣ cos x−sin x ∣ dx ?

$$\:\:\:\frac{\boldsymbol{{bobhans}}}{\iddots\ddots} \\ $$$$\:\underset{\pi/\mathrm{2}} {\overset{\pi} {\int}}\mid\:\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\:\mid\:{dx}\:? \\ $$$$ \\ $$

Question Number 108377    Answers: 1   Comments: 0

There are 20 white and 10 black balls in the box.In turn draw 4 balls and each draw ball is returned to the box before the next ball is drawn and the balls in the box are mixed.What is the probability that out of four balls taken out there will be two white balls?

$$\mathrm{There}\:\mathrm{are}\:\mathrm{20}\:\mathrm{white}\:\mathrm{and}\:\mathrm{10}\:\mathrm{black}\:\mathrm{balls} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{box}.\mathrm{In}\:\mathrm{turn}\:\mathrm{draw}\:\mathrm{4}\:\mathrm{balls}\:\mathrm{and} \\ $$$$\mathrm{each}\:\mathrm{draw}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{returned}\:\mathrm{to}\:\mathrm{the}\:\mathrm{box} \\ $$$$\mathrm{before}\:\mathrm{the}\:\mathrm{next}\:\mathrm{ball}\:\mathrm{is}\:\mathrm{drawn}\:\mathrm{and}\:\mathrm{the}\: \\ $$$$\mathrm{balls}\:\mathrm{in}\:\mathrm{the}\:\mathrm{box}\:\mathrm{are}\:\mathrm{mixed}.\mathrm{What}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{probability}\:\mathrm{that}\:\mathrm{out}\:\mathrm{of}\:\mathrm{four}\:\mathrm{balls} \\ $$$$\mathrm{taken}\:\mathrm{out}\:\mathrm{there}\:\mathrm{will}\:\mathrm{be}\:\mathrm{two}\:\mathrm{white}\:\mathrm{balls}? \\ $$

Question Number 108453    Answers: 1   Comments: 0

If R=(7+4(√3))^(2n) = I+f, where I ∈ N and 0<f<1, then R(1−f) equals

$$\mathrm{If}\:\:{R}=\left(\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}\right)^{\mathrm{2}{n}} \:=\:{I}+{f},\:\mathrm{where}\:{I}\:\in\:{N} \\ $$$$\mathrm{and}\:\:\:\mathrm{0}<{f}<\mathrm{1},\:\mathrm{then}\:{R}\left(\mathrm{1}−{f}\right)\:\mathrm{equals} \\ $$

Question Number 108370    Answers: 0   Comments: 1

Question Number 108369    Answers: 1   Comments: 0

Question Number 108366    Answers: 0   Comments: 1

Question Number 108365    Answers: 1   Comments: 0

Question Number 108350    Answers: 3   Comments: 0

Calculate (d^n /dx^n )(sinx) , (d^n /dx^n )(lnx)

$$\mathrm{Calculate}\:\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{dx}^{\mathrm{n}} }\left(\mathrm{sinx}\right)\:,\:\frac{\mathrm{d}^{\mathrm{n}} }{\mathrm{dx}^{\mathrm{n}} }\left(\mathrm{lnx}\right) \\ $$

Question Number 108349    Answers: 0   Comments: 0

Derive Leibniz′s formula : (fg)^((n)) (x_0 )=Σ_(k=0) ^n C_n ^k f^((k)) (x_0 )g^((n−k)) (x_0 )

$$\mathrm{Derive}\:\mathrm{Leibniz}'\mathrm{s}\:\mathrm{formula}\:: \\ $$$$\left(\mathrm{fg}\right)^{\left(\mathrm{n}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)=\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \mathrm{f}^{\left(\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right)\mathrm{g}^{\left(\mathrm{n}−\mathrm{k}\right)} \left(\mathrm{x}_{\mathrm{0}} \right) \\ $$

Question Number 108371    Answers: 2   Comments: 0

prove by reccurence (1/2)+(1/4)+(1/6)+...+(1/(2n))<or =(n/2) thanks

$${prove}\:{by}\:{reccurence}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}+...+\frac{\mathrm{1}}{\mathrm{2}{n}}<{or}\:=\frac{{n}}{\mathrm{2}} \\ $$$${thanks} \\ $$

Question Number 108341    Answers: 0   Comments: 0

lim_(x→+∞) {ln(cosh x) − x}

$$\underset{\mathrm{x}\rightarrow+\infty} {\mathrm{lim}}\left\{\mathrm{ln}\left(\mathrm{cosh}\:\mathrm{x}\right)\:−\:\mathrm{x}\right\} \\ $$

Question Number 108334    Answers: 1   Comments: 0

((⊸JS⊸)/△) If a random variable X follows normal distribution with mean 30 and variance 25. What is the probalility of X is less than 28 ?

$$\:\:\:\frac{\multimap{JS}\multimap}{\bigtriangleup} \\ $$$${If}\:{a}\:{random}\:{variable}\:{X}\:{follows}\:{normal} \\ $$$${distribution}\:{with}\:{mean}\:\mathrm{30}\:{and}\: \\ $$$${variance}\:\mathrm{25}.\:{What}\:{is}\:{the}\:{probalility} \\ $$$${of}\:{X}\:{is}\:{less}\:{than}\:\mathrm{28}\:? \\ $$

Question Number 108332    Answers: 1   Comments: 0

Question Number 108331    Answers: 1   Comments: 0

Question Number 108326    Answers: 1   Comments: 1

Question Number 108320    Answers: 1   Comments: 0

Question Number 108325    Answers: 0   Comments: 1

((⊸JS⊸)/(−−−−)) ∫ (dx/(x^8 (x^2 +1))) = ?

$$\:\:\:\frac{\multimap{JS}\multimap}{−−−−} \\ $$$$\int\:\frac{{dx}}{{x}^{\mathrm{8}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:=\:? \\ $$

Question Number 109063    Answers: 0   Comments: 1

  Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004      Pg 1005      Pg 1006      Pg 1007      Pg 1008      Pg 1009   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com