Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1004

Question Number 111721    Answers: 1   Comments: 0

If b>1,x>0 and (2x)^(log_b 2) −(3x)^(log_b 3) =0, then x is

$$\mathrm{If}\:\mathrm{b}>\mathrm{1},\mathrm{x}>\mathrm{0}\:\mathrm{and}\:\left(\mathrm{2x}\right)^{\mathrm{log}_{\mathrm{b}} \mathrm{2}} −\left(\mathrm{3x}\right)^{\mathrm{log}_{\mathrm{b}} \mathrm{3}} =\mathrm{0}, \\ $$$$\mathrm{then}\:\mathrm{x}\:\mathrm{is} \\ $$

Question Number 111671    Answers: 0   Comments: 0

Question Number 111668    Answers: 0   Comments: 6

Question Number 111650    Answers: 1   Comments: 2

Question Number 111644    Answers: 3   Comments: 4

y′+y+7=0

$${y}'+{y}+\mathrm{7}=\mathrm{0} \\ $$

Question Number 111643    Answers: 1   Comments: 0

((7/3))!(with out calculator)

$$\left(\frac{\mathrm{7}}{\mathrm{3}}\right)!\left({with}\:{out}\:{calculator}\right) \\ $$

Question Number 111641    Answers: 0   Comments: 0

Question Number 111640    Answers: 0   Comments: 0

Question Number 111635    Answers: 0   Comments: 0

$$ \\ $$

Question Number 111624    Answers: 3   Comments: 0

if x is a cube root of a unity prove that (1−x)^6 =−27

$${if}\:{x}\:{is}\:{a}\:{cube}\:{root}\:{of}\:{a}\:{unity} \\ $$$${prove}\:{that}\: \\ $$$$\left(\mathrm{1}−{x}\right)^{\mathrm{6}} =−\mathrm{27} \\ $$

Question Number 111623    Answers: 1   Comments: 2

(x−2)(x+3)(x−1)^2 ≥ 0

$$\left({x}−\mathrm{2}\right)\left({x}+\mathrm{3}\right)\left({x}−\mathrm{1}\right)^{\mathrm{2}} \:\geqslant\:\mathrm{0} \\ $$

Question Number 111622    Answers: 1   Comments: 0

show that the close form of Σ_(k=0) ^∞ (Σ_(i=0) ^∞ [(((−1)^(k+i) )/((k+1)(k+2i+2)))])=(1/8)ln2

$${show}\:{that}\:{the}\:{close}\:{form}\:{of}\: \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\left(−\mathrm{1}\right)^{{k}+{i}} }{\left({k}+\mathrm{1}\right)\left({k}+\mathrm{2}{i}+\mathrm{2}\right)}\right]\right)=\frac{\mathrm{1}}{\mathrm{8}}\mathrm{ln2} \\ $$

Question Number 111620    Answers: 1   Comments: 0

show that ∫_0 ^1 lnΓ(x)dx=ln(√(2π))

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}\Gamma\left({x}\right){dx}=\mathrm{ln}\sqrt{\mathrm{2}\pi} \\ $$

Question Number 111619    Answers: 1   Comments: 1

solve for x in x^2 +4x=(√(40x^2 +8x−16))

$${solve}\:{for}\:{x}\:{in}\: \\ $$$${x}^{\mathrm{2}} +\mathrm{4}{x}=\sqrt{\mathrm{40}{x}^{\mathrm{2}} +\mathrm{8}{x}−\mathrm{16}} \\ $$

Question Number 111618    Answers: 0   Comments: 0

solve the fredholm integral equation of the second kind y(x)=x+λ∫_0 ^1 (xt^2 +x^2 t)y(t)dt

$${solve}\:{the}\:{fredholm}\:{integral}\:{equation}\:{of} \\ $$$${the}\:{second}\:{kind}\: \\ $$$${y}\left({x}\right)={x}+\lambda\int_{\mathrm{0}} ^{\mathrm{1}} \left({xt}^{\mathrm{2}} +{x}^{\mathrm{2}} {t}\right){y}\left({t}\right){dt} \\ $$

Question Number 111617    Answers: 2   Comments: 0

show that ∫_0 ^(π/4) ((ln(2cos^2 x))/(cos2x))dx=(π^2 /(16))

$${show}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{\mathrm{ln}\left(\mathrm{2cos}^{\mathrm{2}} {x}\right)}{\mathrm{cos2}{x}}{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{16}} \\ $$

Question Number 111616    Answers: 2   Comments: 0

solve the integral problem ∫((cosx)/(2−sin2x))dx

$${solve}\:{the}\:{integral}\:{problem} \\ $$$$\int\frac{\mathrm{cos}{x}}{\mathrm{2}−\mathrm{sin2}{x}}{dx} \\ $$

Question Number 111615    Answers: 2   Comments: 0

solve ∫(dx/((x^2 +2x+3)(√(x^2 +x+3))))

$${solve} \\ $$$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{3}}} \\ $$

Question Number 111614    Answers: 0   Comments: 0

prove that ∫_0 ^∞ (((sinx)/x))^7 =((5887π)/(23040))

$${prove}\:{that}\: \\ $$$$\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{sin}{x}}{{x}}\right)^{\mathrm{7}} =\frac{\mathrm{5887}\pi}{\mathrm{23040}} \\ $$

Question Number 111611    Answers: 2   Comments: 0

solve for x ad y in 5x(1+(1/(x^2 +y^2 )))=12.........(1) 5y(1−(1/(x^2 +y^2 )))=4..........(2)

$${solve}\:{for}\:{x}\:{ad}\:{y}\:{in} \\ $$$$\mathrm{5}{x}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{12}.........\left(\mathrm{1}\right) \\ $$$$\mathrm{5}{y}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }\right)=\mathrm{4}..........\left(\mathrm{2}\right) \\ $$

Question Number 111610    Answers: 1   Comments: 2

Question Number 111601    Answers: 1   Comments: 0

Question Number 111586    Answers: 0   Comments: 3

DTM−2020 savollaridan biri. ∫x^x = ? t.me/matematik_olimpiadachilar

$$\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{DTM}}−\mathrm{2020}\:\:\boldsymbol{{savollaridan}}\:\:\boldsymbol{{biri}}. \\ $$$$\:\int\boldsymbol{{x}}^{\boldsymbol{{x}}} =\:? \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{t}}.\boldsymbol{{me}}/\boldsymbol{{matematik\_olimpiadachilar}} \\ $$

Question Number 111584    Answers: 2   Comments: 0

Question Number 111583    Answers: 1   Comments: 0

without using a substitution for 3^x solve the equation 9^x −3^(x + 2) −36 = 0

$$\mathrm{without}\:\mathrm{using}\:\mathrm{a}\:\mathrm{substitution}\:\mathrm{for}\:\mathrm{3}^{{x}} \:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\:\mathrm{9}^{{x}} −\mathrm{3}^{{x}\:+\:\mathrm{2}} −\mathrm{36}\:=\:\mathrm{0} \\ $$

Question Number 111581    Answers: 1   Comments: 10

the age of a mother and daughter arein the ratio of 8:5.if the age now is 15,what was the age of the mother six years ago.

$${the}\:{age}\:{of}\:{a}\:{mother}\:{and}\:{daughter}\:{arein} \\ $$$${the}\:{ratio}\:{of}\:\mathrm{8}:\mathrm{5}.{if}\:{the}\:{age}\:{now}\:{is} \\ $$$$\mathrm{15},{what}\:{was}\:{the}\:{age}\:{of}\:{the}\:{mother} \\ $$$${six}\:{years}\:{ago}. \\ $$

  Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004      Pg 1005      Pg 1006      Pg 1007      Pg 1008   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com