Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1003

Question Number 113355    Answers: 1   Comments: 1

A rectangular cardboard is 8cm long and 6cm wide. What is the least number of beads you can arrange on the board such that there are at least two of the beads that are less than (√(10))cm apart.

$$\mathrm{A}\:\mathrm{rectangular}\:\mathrm{cardboard}\:\mathrm{is}\:\mathrm{8cm}\:\mathrm{long} \\ $$$$\mathrm{and}\:\mathrm{6cm}\:\mathrm{wide}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{least} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{beads}\:\mathrm{you}\:\mathrm{can}\:\mathrm{arrange}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{board}\:\mathrm{such}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{at}\:\mathrm{least} \\ $$$$\mathrm{two}\:\mathrm{of}\:\mathrm{the}\:\mathrm{beads}\:\mathrm{that}\:\mathrm{are}\:\mathrm{less}\:\mathrm{than} \\ $$$$\sqrt{\mathrm{10}}\mathrm{cm}\:\mathrm{apart}. \\ $$

Question Number 113354    Answers: 0   Comments: 3

( ((n),(0) )/2)−( ((n),(1) )/3)+( ((n),(2) )/4)−( ((n),(3) )/5)+.....n

$$\frac{\begin{pmatrix}{{n}}\\{\mathrm{0}}\end{pmatrix}}{\mathrm{2}}−\frac{\begin{pmatrix}{{n}}\\{\mathrm{1}}\end{pmatrix}}{\mathrm{3}}+\frac{\begin{pmatrix}{{n}}\\{\mathrm{2}}\end{pmatrix}}{\mathrm{4}}−\frac{\begin{pmatrix}{{n}}\\{\mathrm{3}}\end{pmatrix}}{\mathrm{5}}+.....{n} \\ $$

Question Number 113353    Answers: 1   Comments: 0

What is the maximum number of points to be distributed within a 3×6 to ensure that there are no two points whose distance apart is less than (√2)?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{points}\:\mathrm{to}\:\mathrm{be}\:\mathrm{distributed}\:\mathrm{within} \\ $$$$\mathrm{a}\:\mathrm{3}×\mathrm{6}\:\mathrm{to}\:\mathrm{ensure}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{points}\:\mathrm{whose}\:\mathrm{distance}\:\mathrm{apart}\:\mathrm{is}\:\mathrm{less} \\ $$$$\mathrm{than}\:\sqrt{\mathrm{2}}? \\ $$

Question Number 113346    Answers: 1   Comments: 0

Question Number 113343    Answers: 1   Comments: 1

find the angle between x+3(√(3y))=2,(√(3x))−5y=2 help me sir please

$${find}\:{the}\:{angle}\:{between}\:{x}+\mathrm{3}\sqrt{\mathrm{3}{y}}=\mathrm{2},\sqrt{\mathrm{3}{x}}−\mathrm{5}{y}=\mathrm{2} \\ $$$${help}\:{me}\:{sir}\:{please} \\ $$

Question Number 113341    Answers: 3   Comments: 0

Question Number 113336    Answers: 0   Comments: 0

If 1, a^2 ,a^3 ,...,a^(n−1) are the roots nth of unity , prove that : (1+a)(1+a^2 )(1+a^3 )...(1+a^(n−1) ) = n−2⌊(n/2)⌋

$${If}\:\mathrm{1},\:{a}^{\mathrm{2}} ,{a}^{\mathrm{3}} \:,...,{a}^{{n}−\mathrm{1}} \:{are}\:{the}\:{roots}\: \\ $$$${nth}\:{of}\:{unity}\:,\: \\ $$$${prove}\:{that}\::\:\left(\mathrm{1}+{a}\right)\left(\mathrm{1}+{a}^{\mathrm{2}} \right)\left(\mathrm{1}+{a}^{\mathrm{3}} \right)...\left(\mathrm{1}+{a}^{{n}−\mathrm{1}} \right) \\ $$$$=\:{n}−\mathrm{2}\lfloor\frac{{n}}{\mathrm{2}}\rfloor \\ $$$$ \\ $$

Question Number 113333    Answers: 2   Comments: 0

Question Number 113330    Answers: 1   Comments: 0

Question Number 113323    Answers: 2   Comments: 0

Question Number 113309    Answers: 2   Comments: 4

Question Number 113375    Answers: 0   Comments: 1

(i) How does one find the equation of the perpendicular to a line? (ii) How does one calculate standard deviation. Explain in details.

$$\left(\mathrm{i}\right)\:\mathrm{How}\:\mathrm{does}\:\mathrm{one}\:\mathrm{find}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{perpendicular}\:\mathrm{to}\:\mathrm{a}\:\mathrm{line}? \\ $$$$ \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{How}\:\mathrm{does}\:\mathrm{one}\:\mathrm{calculate}\:\mathrm{standard} \\ $$$$\mathrm{deviation}.\:\mathrm{Explain}\:\mathrm{in}\:\mathrm{details}. \\ $$

Question Number 113374    Answers: 1   Comments: 5

Find the next term in this sequence: 26,63,124, __

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{next}\:\mathrm{term}\:\mathrm{in}\:\mathrm{this} \\ $$$$\mathrm{sequence}:\:\mathrm{26},\mathrm{63},\mathrm{124},\:\_\_ \\ $$

Question Number 113372    Answers: 1   Comments: 2

2^a +2^b +2^c +2^d =57, find a+b+c+d. a≠b≠c≠d and a,b,c,d are positive integers.

$$\mathrm{2}^{\mathrm{a}} +\mathrm{2}^{\mathrm{b}} +\mathrm{2}^{\mathrm{c}} +\mathrm{2}^{\mathrm{d}} =\mathrm{57},\:\mathrm{find}\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}. \\ $$$$\mathrm{a}\neq\mathrm{b}\neq\mathrm{c}\neq\mathrm{d}\:\mathrm{and}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{are}\:\mathrm{positive} \\ $$$$\mathrm{integers}. \\ $$

Question Number 113278    Answers: 2   Comments: 0

solve ∫((√(x^2 +x+2−(√(4x^2 +4x+4))))/(x(√(x^4 +x^3 +x^2 ))))dx

$${solve} \\ $$$$\int\frac{\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{2}−\sqrt{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{4}{x}+\mathrm{4}}}}{{x}\sqrt{{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} }}{dx} \\ $$

Question Number 113275    Answers: 2   Comments: 0

∫ (dx/(3sin x+sin^3 x)) ?

$$\:\int\:\frac{\mathrm{dx}}{\mathrm{3sin}\:\mathrm{x}+\mathrm{sin}\:^{\mathrm{3}} \mathrm{x}}\:? \\ $$

Question Number 113274    Answers: 4   Comments: 2

(1) lim_(x→0) ((tan x+4tan 2x−3tan 3x)/(x^2 tan x)) (2) lim_(x→0) (((√x)−(√(sin x)))/x^(3/2) ) (3) lim_(x→0) (((√x)+(√(sin x)))/x^(5/2) )

$$\:\left(\mathrm{1}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{x}+\mathrm{4tan}\:\mathrm{2x}−\mathrm{3tan}\:\mathrm{3x}}{\mathrm{x}^{\mathrm{2}} \:\mathrm{tan}\:\mathrm{x}} \\ $$$$\:\left(\mathrm{2}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}−\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\: \\ $$$$\:\left(\mathrm{3}\right)\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{x}}+\sqrt{\mathrm{sin}\:\mathrm{x}}}{\mathrm{x}^{\frac{\mathrm{5}}{\mathrm{2}}} } \\ $$

Question Number 113272    Answers: 2   Comments: 0

Solve the following equations: a)(x^2 −a)^2 −6x^2 +4x+2a=0 b)x^4 −4x^3 −10x^3 +37x−14=0,if it known that the left−hand side of the equation can be decomposed into factors with integral coefficients.

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{following}\:\mathrm{equations}: \\ $$$$\left.\mathrm{a}\right)\left(\mathrm{x}^{\mathrm{2}} −\mathrm{a}\right)^{\mathrm{2}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{4x}+\mathrm{2a}=\mathrm{0} \\ $$$$\left.\mathrm{b}\right)\mathrm{x}^{\mathrm{4}} −\mathrm{4x}^{\mathrm{3}} −\mathrm{10x}^{\mathrm{3}} +\mathrm{37x}−\mathrm{14}=\mathrm{0},\mathrm{if}\:\mathrm{it} \\ $$$$\mathrm{known}\:\mathrm{that}\:\mathrm{the}\:\mathrm{left}−\mathrm{hand}\:\mathrm{side}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{can}\:\mathrm{be}\:\mathrm{decomposed}\:\mathrm{into} \\ $$$$\mathrm{factors}\:\mathrm{with}\:\mathrm{integral}\:\mathrm{coefficients}. \\ $$

Question Number 113271    Answers: 0   Comments: 0

solve the initial boundary value problem of wave equation ((∂^2 u(x,t))/∂t^2 )=9((∂^2 u(x,t))/∂x^2 ),0<x<2,t>0 u(0,t)=1,u(2,t)=3,t>0 u(x,0)=2,0<x<2 (∂u/∂t)(x,0)=sin2x,0<x<2

$${solve}\:{the}\:{initial}\:{boundary}\:{value} \\ $$$${problem}\:{of}\:{wave}\:{equation} \\ $$$$\frac{\partial^{\mathrm{2}} {u}\left({x},{t}\right)}{\partial{t}^{\mathrm{2}} }=\mathrm{9}\frac{\partial^{\mathrm{2}} {u}\left({x},{t}\right)}{\partial{x}^{\mathrm{2}} },\mathrm{0}<{x}<\mathrm{2},{t}>\mathrm{0} \\ $$$${u}\left(\mathrm{0},{t}\right)=\mathrm{1},{u}\left(\mathrm{2},{t}\right)=\mathrm{3},{t}>\mathrm{0} \\ $$$${u}\left({x},\mathrm{0}\right)=\mathrm{2},\mathrm{0}<{x}<\mathrm{2} \\ $$$$\frac{\partial{u}}{\partial{t}}\left({x},\mathrm{0}\right)=\mathrm{sin2}{x},\mathrm{0}<{x}<\mathrm{2} \\ $$

Question Number 113262    Answers: 2   Comments: 0

find the complex form of equation 4x^2 −2y^2 =5

$$\mathrm{find}\:\mathrm{the}\:\mathrm{complex}\:\mathrm{form}\:\mathrm{of}\: \\ $$$$\mathrm{equation}\:\mathrm{4x}^{\mathrm{2}} −\mathrm{2y}^{\mathrm{2}} =\mathrm{5} \\ $$

Question Number 113261    Answers: 1   Comments: 0

(((√((√5)+2))+(√((√5)−2)))/( (√((√5)+1))))−(√(3−2(√2)))

$$\frac{\sqrt{\sqrt{\mathrm{5}}+\mathrm{2}}+\sqrt{\sqrt{\mathrm{5}}−\mathrm{2}}}{\:\sqrt{\sqrt{\mathrm{5}}+\mathrm{1}}}−\sqrt{\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}} \\ $$

Question Number 113246    Answers: 1   Comments: 1

Question Number 113243    Answers: 1   Comments: 3

Question Number 113241    Answers: 1   Comments: 0

Question Number 113237    Answers: 1   Comments: 0

Question Number 121155    Answers: 0   Comments: 0

  Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004      Pg 1005      Pg 1006      Pg 1007   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com