Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1003
Question Number 119909 Answers: 2 Comments: 0
$${Given}\:{f}\left({x}\right)=\frac{{px}+{q}}{{x}+\mathrm{2}}\:,\:{q}\neq\:\mathrm{0} \\ $$$${f}^{−\mathrm{1}} \:\left({q}\right)\:=\:−\mathrm{1}\:{then}\:{f}^{−\mathrm{1}} \left(\mathrm{2}{q}\right)=? \\ $$
Question Number 119902 Answers: 3 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{cos}\:{x}\right)^{\frac{\mathrm{1}}{\mathrm{sin}\:^{\mathrm{2}} {x}}} \:? \\ $$
Question Number 119896 Answers: 2 Comments: 1
Question Number 119894 Answers: 2 Comments: 0
Question Number 119893 Answers: 2 Comments: 0
Question Number 119892 Answers: 1 Comments: 0
Question Number 119891 Answers: 0 Comments: 0
$${show}\:{that}\: \\ $$$$\frac{{d}}{{dx}}\:\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {lnt}\:{dt} \\ $$
Question Number 119876 Answers: 0 Comments: 0
Question Number 119875 Answers: 3 Comments: 1
Question Number 119866 Answers: 1 Comments: 4
Question Number 119867 Answers: 1 Comments: 2
$${li}\underset{{x}\rightarrow\infty} {{m}}\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right)^{{n}} −\sqrt{{e}}}{\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}\right)^{{n}} −{e}^{\mathrm{2}} }=??? \\ $$
Question Number 119856 Answers: 0 Comments: 4
$$\mathrm{i}\:\mathrm{have}\:\mathrm{forgotten}\:\mathrm{my}\:\mathrm{password}. \\ $$$$\mathrm{how}\:\mathrm{may}\:\mathrm{i}\:\mathrm{retrieve}\:\mathrm{it}? \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{or}\:\mathrm{forward}\:\mathrm{me}\:\mathrm{to} \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{developers}\:\mathrm{please} \\ $$
Question Number 119852 Answers: 1 Comments: 0
$$\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{n}^{\mathrm{2}} \:\int\:\underset{\mathrm{0}} {\overset{\frac{\mathrm{1}}{{n}}} {\:}}{x}^{{x}+\mathrm{1}} \:{dx}\:=? \\ $$
Question Number 119849 Answers: 1 Comments: 0
$${Find}\:{all}\:{pair}\left({x},{y}\right)\:{of}\:{real}\:{numbers} \\ $$$${that}\:{are}\:{the}\:{solutions}\:{to}\:{the}\:{system} \\ $$$$\begin{cases}{{x}^{\mathrm{4}} +\mathrm{2}{x}^{\mathrm{3}} −{y}=−\frac{\mathrm{1}}{\mathrm{4}}+\sqrt{\mathrm{3}}}\\{{y}^{\mathrm{4}} +\mathrm{2}{y}^{\mathrm{3}} −{x}=−\frac{\mathrm{1}}{\mathrm{4}}−\sqrt{\mathrm{3}}}\end{cases} \\ $$
Question Number 119848 Answers: 1 Comments: 0
$${Solve}\:{in}\:{real}\:{numbers}\:{the}\:{equation} \\ $$$$\sqrt[{\mathrm{3}\:}]{{x}}\:+\:\sqrt[{\mathrm{3}\:}]{{x}−\mathrm{1}}\:+\:\sqrt[{\mathrm{3}\:}]{{x}+\mathrm{1}}\:=\:\mathrm{0} \\ $$
Question Number 119839 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{sin}\:{x}−\mathrm{cos}^{\mathrm{2}} {x}+\mathrm{sin}^{\mathrm{3}} {x}−\mathrm{cos}^{\mathrm{4}} {x}+\mathrm{sin}^{\mathrm{5}} {x}−\mathrm{cos}^{\mathrm{6}} {x} \\ $$$$+\mathrm{sin}^{\mathrm{7}} {x}−\mathrm{cos}^{\mathrm{8}} {x}+\ldots\ldots=\sqrt{\mathrm{2}}−\mathrm{1} \\ $$
Question Number 119837 Answers: 0 Comments: 0
$$\mathrm{find}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\:\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{n}}} \left(\mathrm{1}−\frac{\mathrm{x}}{\sqrt{\mathrm{n}}}\right)^{\sqrt{\mathrm{2n}}} \:\mathrm{arctan}\left(\frac{\pi\mathrm{x}}{\mathrm{n}}\right)\mathrm{dx} \\ $$
Question Number 119835 Answers: 2 Comments: 1
$$\mathrm{If}\:{M}\:\mathrm{and}\:{m}\:\mathrm{are}\:\mathrm{respectively}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{and} \\ $$$$\mathrm{the}\:\mathrm{smallest}\:\mathrm{integers}\:\mathrm{that}\:\mathrm{satisfying}\:\mathrm{the} \\ $$$$\mathrm{inequality}\:\mathrm{6}{n}^{\mathrm{2}} −\mathrm{5}{n}\leqslant\mathrm{99},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${M}−{m}. \\ $$
Question Number 119832 Answers: 0 Comments: 0
$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{evaluate}:\:\:\:\:{I}\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{{x}}\right)^{{x}!} {dx} \\ $$$$ \\ $$$$ \\ $$
Question Number 119831 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{evaluate}:\:\:\:{I}\:\:=\:\int_{\mathrm{1}} ^{\:\infty} \left(\frac{\mathrm{1}}{{x}}\right)^{{x}} {dx} \\ $$$$\: \\ $$$$\: \\ $$
Question Number 119812 Answers: 2 Comments: 0
Question Number 119808 Answers: 2 Comments: 0
$${f}^{−\mathrm{1}} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}{x} \\ $$$${f}\left(\mathrm{8}\right)=? \\ $$
Question Number 119807 Answers: 1 Comments: 0
$$\mathrm{Let}\:{f}\:\mathrm{be}\:\mathrm{a}\:\mathrm{real}-\mathrm{valued}\:\mathrm{function}\:\mathrm{defined}\:\mathrm{on}\:\mathrm{the}\:\mathrm{inte}- \\ $$$$\mathrm{rval}\:\left[−\mathrm{1},\:\mathrm{1}\right].\:\mathrm{If}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{with} \\ $$$$\left(\mathrm{0},\:\mathrm{0}\right)\:\mathrm{and}\:\left(\mathrm{x},\:{f}\left(\mathrm{x}\right)\right)\:\mathrm{as}\:\mathrm{two}\:\mathrm{vertices}\:\mathrm{is}\:\sqrt{\mathrm{3}}/\mathrm{4},\:\mathrm{then}\:{f}\left(\mathrm{x}\right) \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$$$\left(\mathrm{A}\right)\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$$$\left(\mathrm{C}\right)\:−\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} } \\ $$
Question Number 119803 Answers: 1 Comments: 0
Question Number 119802 Answers: 2 Comments: 0
$${Given}\:{a},{b},{c}\:{real}\:{number}\:{and}\:{not}\:{equal}\:{to}\:\mathrm{1}. \\ $$$${If}\:\mathrm{log}\:_{{a}} \left({b}\right)+\mathrm{log}\:_{{b}} \left({c}\right)+\mathrm{log}\:_{{c}} \left({a}\right)=\mathrm{0}\:{then}\: \\ $$$$\left(\mathrm{log}\:_{{a}} \left({b}\right)\right)^{\mathrm{3}} +\left(\mathrm{log}\:_{{b}} \left({c}\right)\right)^{\mathrm{3}} +\left(\mathrm{log}\:_{{c}} \left({a}\right)\right)^{\mathrm{3}} =? \\ $$
Question Number 119800 Answers: 0 Comments: 2
$$\mathrm{Examples}\:\mathrm{of}\:\mathrm{functions}\:\mathrm{such}\:\mathrm{that} \\ $$$${f}\left(\mathrm{x}+\mathrm{y}\right)={f}\left(\mathrm{x}\right)+{f}\left(\mathrm{y}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\in\mathbb{R} \\ $$
Pg 998 Pg 999 Pg 1000 Pg 1001 Pg 1002 Pg 1003 Pg 1004 Pg 1005 Pg 1006 Pg 1007
Terms of Service
Privacy Policy
Contact: info@tinkutara.com