Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1002

Question Number 119564    Answers: 0   Comments: 0

((3/x) − ((15)/(2y)) ) ÷ (6/(xy)) = ((6y − 15x)/(2xy)) × ((xy)/6).

$$\left(\frac{\mathrm{3}}{{x}}\:−\:\frac{\mathrm{15}}{\mathrm{2}{y}}\:\right)\:\boldsymbol{\div}\:\frac{\mathrm{6}}{{xy}}\:=\:\frac{\mathrm{6}{y}\:−\:\mathrm{15}{x}}{\mathrm{2}{xy}}\:×\:\frac{{xy}}{\mathrm{6}}. \\ $$

Question Number 119548    Answers: 1   Comments: 2

Question Number 119540    Answers: 1   Comments: 0

Question Number 119538    Answers: 1   Comments: 1

Question Number 119529    Answers: 3   Comments: 7

Question Number 119524    Answers: 1   Comments: 0

Question Number 119517    Answers: 2   Comments: 0

lim_(x→∞) [ sin (x+(1/x))−sin x ] =?

$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left[\:\mathrm{sin}\:\left({x}+\frac{\mathrm{1}}{{x}}\right)−\mathrm{sin}\:{x}\:\right]\:=? \\ $$

Question Number 119527    Answers: 2   Comments: 2

Question Number 119510    Answers: 0   Comments: 0

Differential Equation (1 − x)(d^2 y/dx^2 ) + x(dy/dx) − xy = (1/(1 − x)) , x ≠ 1 has the power series solution for ∣x∣<1

$${Differential}\:{Equation}\: \\ $$$$\left(\mathrm{1}\:−\:{x}\right)\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+\:{x}\frac{{dy}}{{dx}}\:−\:{xy}\:=\:\frac{\mathrm{1}}{\mathrm{1}\:−\:{x}}\:,\:{x}\:\neq\:\mathrm{1} \\ $$$${has}\:{the}\:{power}\:{series}\:{solution}\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$

Question Number 119506    Answers: 1   Comments: 0

cos (π/5)cos x+sin (π/5)sin x ≤ ((√2)/2)

$$\:\:\:\mathrm{cos}\:\frac{\pi}{\mathrm{5}}\mathrm{cos}\:{x}+\mathrm{sin}\:\frac{\pi}{\mathrm{5}}\mathrm{sin}\:{x}\:\leqslant\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Question Number 119503    Answers: 2   Comments: 0

solve ⌊ (√x) ⌋ = ⌊ (x)^(1/(3 )) ⌋

$${solve}\:\lfloor\:\sqrt{{x}}\:\rfloor\:=\:\lfloor\:\sqrt[{\mathrm{3}\:}]{{x}}\:\rfloor\: \\ $$

Question Number 119495    Answers: 0   Comments: 0

Question Number 119494    Answers: 3   Comments: 0

Russian olympiad find real solution of the system { ((sin x+2sin (x+y+z)=0)),((sin y+3sin (x+y+z)=0)),((sin z+4sin (x+y+z)=0)) :}

$${Russian}\:{olympiad}\: \\ $$$${find}\:{real}\:{solution}\:{of}\:{the}\:{system}\: \\ $$$$\begin{cases}{\mathrm{sin}\:{x}+\mathrm{2sin}\:\left({x}+{y}+{z}\right)=\mathrm{0}}\\{\mathrm{sin}\:{y}+\mathrm{3sin}\:\left({x}+{y}+{z}\right)=\mathrm{0}}\\{\mathrm{sin}\:{z}+\mathrm{4sin}\:\left({x}+{y}+{z}\right)=\mathrm{0}}\end{cases} \\ $$$$ \\ $$

Question Number 119490    Answers: 0   Comments: 0

Let a<c<b such that c−a=b−c. If f:R→R is a function satisfying the relation f(x+a)+f(x+b)=f(x+c) for all x∈R then a period of f is (A) (b−a) (B) 2(b−a) (C) 3(b−a) (D) 4(b−a)

$$\mathrm{Let}\:{a}<\mathrm{c}<\mathrm{b}\:\mathrm{such}\:\mathrm{that}\:\mathrm{c}−{a}=\mathrm{b}−\mathrm{c}.\:\mathrm{If}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{function}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{relation} \\ $$$$\:\:{f}\left(\mathrm{x}+{a}\right)+{f}\left(\mathrm{x}+\mathrm{b}\right)={f}\left(\mathrm{x}+\mathrm{c}\right)\:\:\mathrm{for}\:\mathrm{all}\:\mathrm{x}\in\mathbb{R} \\ $$$$\mathrm{then}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:{f}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\left(\mathrm{b}−{a}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\:\mathrm{2}\left(\mathrm{b}−{a}\right) \\ $$$$\left(\mathrm{C}\right)\:\mathrm{3}\left(\mathrm{b}−{a}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:\mathrm{4}\left(\mathrm{b}−{a}\right) \\ $$

Question Number 119487    Answers: 2   Comments: 0

find element of set S = { ((x^3 −3x^2 +2)/(2x+1)) ∈ Z for x∈Z }

$${find}\:{element}\:{of}\:{set}\:{S}\:=\:\left\{\:\frac{{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}}{\mathrm{2}{x}+\mathrm{1}}\:\in\:\mathbb{Z}\:{for}\:{x}\in\mathbb{Z}\:\right\} \\ $$

Question Number 119483    Answers: 1   Comments: 0

Let a>0 and f:R→R a function satisfying f(x+a)=1+[2−3f(x)+3f(x)^2 −f(x)^3 ]^(1/3) for all x∈R. Then a period of f(x) is ka where k is a positive integer whose value is (A)1 (B)2 (C)3 (D)4

$$\mathrm{Let}\:{a}>\mathrm{0}\:\mathrm{and}\:{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{a}\:\mathrm{function}\:\mathrm{satisfying} \\ $$$$\:\:\:\:\:{f}\left(\mathrm{x}+{a}\right)=\mathrm{1}+\left[\mathrm{2}−\mathrm{3}{f}\left(\mathrm{x}\right)+\mathrm{3}{f}\left(\mathrm{x}\right)^{\mathrm{2}} −{f}\left(\mathrm{x}\right)^{\mathrm{3}} \right]^{\mathrm{1}/\mathrm{3}} \\ $$$$\mathrm{for}\:\mathrm{all}\:\mathrm{x}\in\mathbb{R}.\:\mathrm{Then}\:\mathrm{a}\:\mathrm{period}\:\mathrm{of}\:{f}\left(\mathrm{x}\right)\:\mathrm{is}\:{ka}\:\mathrm{where}\:{k}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{whose}\:\mathrm{value}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{B}\right)\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{C}\right)\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\mathrm{4} \\ $$

Question Number 119482    Answers: 1   Comments: 0

lim_(x→0) x^2 cos ((1/x)) ?

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{x}^{\mathrm{2}} \:\mathrm{cos}\:\left(\frac{\mathrm{1}}{{x}}\right)\:? \\ $$

Question Number 119479    Answers: 3   Comments: 0

Π_(k=1) ^∞ cos((x/2^k )) = ?

$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\prod}}\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}^{\mathrm{k}} }\right)\:=\:? \\ $$

Question Number 119474    Answers: 0   Comments: 0

Please help create an algorithm when the userviews in website around 0− 11:59 it will alert “Good Morning” and from 12− 15:59 it will alert “Goodafternoon” and lastly from 16− 23:59 it will alert “Good evening”.

$$ \\ $$$$\boldsymbol{{P}\mathrm{lease}}\:\boldsymbol{\mathrm{help}} \\ $$$$\mathrm{create}\:\mathrm{an}\:\mathrm{algorithm}\:\mathrm{when}\:\mathrm{the}\: \\ $$$$\mathrm{userviews}\:\mathrm{in}\:\mathrm{website}\:\mathrm{around}\:\mathrm{0}− \\ $$$$\mathrm{11}:\mathrm{59}\:\mathrm{it}\:\mathrm{will}\:\mathrm{alert}\:``\mathrm{Good}\:\mathrm{Morning}''\: \\ $$$$\mathrm{and}\:\mathrm{from}\:\mathrm{12}−\:\mathrm{15}:\mathrm{59}\:\mathrm{it}\:\mathrm{will}\:\mathrm{alert}\: \\ $$$$``\mathrm{Goodafternoon}''\:\mathrm{and}\:\mathrm{lastly}\:\mathrm{from}\: \\ $$$$\mathrm{16}−\:\mathrm{23}:\mathrm{59}\:\mathrm{it}\:\mathrm{will}\:\mathrm{alert}\:``\mathrm{Good}\:\mathrm{evening}''. \\ $$

Question Number 119473    Answers: 4   Comments: 1

Question Number 119472    Answers: 1   Comments: 0

Question Number 122799    Answers: 1   Comments: 0

Question Number 122798    Answers: 2   Comments: 1

Question Number 119464    Answers: 2   Comments: 0

Expand as far as the term in x^3 (1) (3−2x−x^2 )^9 (2) (1−x+x^2 )^8

$$\mathrm{Expand}\:\mathrm{as}\:\mathrm{far}\:\mathrm{as}\:\mathrm{the}\:\mathrm{term}\:\mathrm{in}\:\mathrm{x}^{\mathrm{3}} \\ $$$$\left(\mathrm{1}\right)\:\left(\mathrm{3}−\mathrm{2x}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{9}} \\ $$$$\left(\mathrm{2}\right)\:\left(\mathrm{1}−\mathrm{x}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{8}} \\ $$

Question Number 119463    Answers: 1   Comments: 2

one cube of side length 3cm is painted by three colour say (red blue and black) opposte face same colour Now cube is cut into 27 small cube i)How many cube has three face coloured ii)How many cube two face coloured iii)How many cube has no colour in its face

$${one}\:{cube}\:{of}\:{side}\:{length}\:\mathrm{3}{cm}\:{is}\:{painted}\:{by}\:{three}\:{colour} \\ $$$${say}\:\left({red}\:{blue}\:{and}\:{black}\right)\:{opposte}\:{face}\:{same}\:{colour} \\ $$$${Now}\:{cube}\:{is}\:{cut}\:{into}\:\mathrm{27}\:{small}\:{cube} \\ $$$$\left.{i}\right){How}\:{many}\:{cube}\:{has}\:{three}\:{face}\:{coloured} \\ $$$$\left.{ii}\right){How}\:{many}\:{cube}\:{two}\:{face}\:{coloured} \\ $$$$\left.{iii}\right){How}\:{many}\:{cube}\:\:{has}\:{no}\:{colour}\:{in}\:{its}\:{face} \\ $$

Question Number 119462    Answers: 2   Comments: 0

... advanced calculus... evaluate :: Ω=∫_0 ^( ∞) ((tan^(−1) (x))/(e^(2πx) −1))dx =? m.n.1970

$$\:\:\:\:\:\:\:\:\:\:...\:{advanced}\:{calculus}... \\ $$$$\:\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \:\frac{{tan}^{−\mathrm{1}} \left({x}\right)}{{e}^{\mathrm{2}\pi{x}} −\mathrm{1}}{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970} \\ $$

  Pg 997      Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004      Pg 1005      Pg 1006   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com