Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1002

Question Number 113504    Answers: 0   Comments: 3

Question Number 113503    Answers: 0   Comments: 1

Question Number 113499    Answers: 0   Comments: 0

Question Number 113490    Answers: 0   Comments: 1

Question Number 113488    Answers: 2   Comments: 0

prove that ((sin(2a)cos(2a))/(cos(4a))) = (1/2) tan(4a)

$${prove}\:{that} \\ $$$$\frac{{sin}\left(\mathrm{2}{a}\right){cos}\left(\mathrm{2}{a}\right)}{{cos}\left(\mathrm{4}{a}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:{tan}\left(\mathrm{4}{a}\right) \\ $$

Question Number 113486    Answers: 1   Comments: 1

Question Number 113472    Answers: 1   Comments: 0

Question Number 113468    Answers: 0   Comments: 0

Question Number 113465    Answers: 0   Comments: 7

Question Number 113464    Answers: 1   Comments: 0

(x^2 (d^2 y/dx^2 ) +x (dy/dx) + 1).y = 0

$$\:\left({x}^{\mathrm{2}} \:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:+{x}\:\frac{{dy}}{{dx}}\:+\:\mathrm{1}\right).{y}\:=\:\mathrm{0} \\ $$

Question Number 113456    Answers: 0   Comments: 0

Question Number 113455    Answers: 1   Comments: 1

Question Number 113452    Answers: 1   Comments: 0

Question Number 113451    Answers: 3   Comments: 0

If 2x=a^n +a^(−n) and 2y=a^n −a^(−n) calculate the value of x^2 −y^(2 ) in its simplest form

$$\mathrm{If}\:\mathrm{2x}=\mathrm{a}^{\mathrm{n}} +\mathrm{a}^{−\mathrm{n}} \:\mathrm{and}\:\mathrm{2y}=\mathrm{a}^{\mathrm{n}} −\mathrm{a}^{−\mathrm{n}} \:\mathrm{calculate} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}\:} \:\mathrm{in}\:\mathrm{its}\:\mathrm{simplest}\:\mathrm{form} \\ $$

Question Number 113444    Answers: 1   Comments: 0

y′′−2ay′+(1+a^2 )y=te^(at) +sint

$$\mathrm{y}''−\mathrm{2ay}'+\left(\mathrm{1}+\mathrm{a}^{\mathrm{2}} \right)\mathrm{y}=\mathrm{te}^{\mathrm{at}} +\mathrm{sint} \\ $$

Question Number 113438    Answers: 2   Comments: 0

lim_(x→∞) x(5^(1/x) −1) ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{x}\left(\mathrm{5}^{\frac{\mathrm{1}}{{x}}} −\mathrm{1}\right)\:? \\ $$

Question Number 113430    Answers: 0   Comments: 0

Question Number 113429    Answers: 0   Comments: 0

Question Number 113426    Answers: 1   Comments: 0

Question Number 113421    Answers: 0   Comments: 2

Question Number 113418    Answers: 3   Comments: 1

∫ ((3x−2)/( (√(x^2 +2x+26)))) dx

$$\:\int\:\frac{\mathrm{3x}−\mathrm{2}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{26}}}\:\mathrm{dx} \\ $$

Question Number 113414    Answers: 0   Comments: 0

Question Number 113407    Answers: 0   Comments: 0

Question Number 113408    Answers: 1   Comments: 1

Question Number 113393    Answers: 0   Comments: 6

loving questions of the form “if ... then find the sum/product/etc. of... so please solve these: (1) if γ and λ are the solutions of x^2 +x−12=0 then find coshλ−cotγ (2) if a+b=2 and a−b=0 then find ∫x^((a+b)/(2ab)) ln(−e^(iπa) −x)ln(e^(cos^(−1) b) −x)dx are you intelligent enough? then please please please sir or madam help me!!! I need an answer urgentliest!!!! good luck! (c) by HeR MaJε∫tY 20200913

$${loving}\:{questions}\:{of}\:{the}\:{form} \\ $$$$``{if}\:...\:{then}\:{find}\:{the}\:{sum}/{product}/{etc}.\:{of}... \\ $$$${so}\:{please}\:{solve}\:{these}: \\ $$$$\left(\mathrm{1}\right) \\ $$$${if}\:\gamma\:{and}\:\lambda\:{are}\:{the}\:{solutions}\:{of} \\ $$$${x}^{\mathrm{2}} +{x}−\mathrm{12}=\mathrm{0}\:{then}\:{find}\:{cosh}\lambda−{cot}\gamma \\ $$$$\left(\mathrm{2}\right) \\ $$$${if}\:{a}+{b}=\mathrm{2}\:{and}\:{a}−{b}=\mathrm{0}\:{then}\:{find} \\ $$$$\int{x}^{\frac{{a}+{b}}{\mathrm{2}{ab}}} {ln}\left(−{e}^{{i}\pi{a}} −{x}\right){ln}\left({e}^{{cos}^{−\mathrm{1}} {b}} −{x}\right){dx} \\ $$$${are}\:{you}\:{intelligent}\:{enough}? \\ $$$${then}\:{please}\:{please}\:{please}\:{sir}\:{or}\:{madam} \\ $$$${help}\:{me}!!!\:{I}\:{need}\:{an}\:{answer}\:\boldsymbol{\mathrm{urgentliest}}!!!! \\ $$$${good}\:{luck}! \\ $$$$\left({c}\right)\:{by}\:\mathbb{H}\mathfrak{e}\mathscr{R}\:\mathfrak{M}\boldsymbol{{a}}\mathbb{J}\epsilon\int{t}\mathscr{Y}\:\:\mathrm{20200913} \\ $$

Question Number 113357    Answers: 0   Comments: 7

lim_(x→∞) (ln(ln(lnx))))^(1/x)

$$\left.{lim}_{{x}\rightarrow\infty} \left({ln}\left({ln}\left({lnx}\right)\right)\right)\right)^{\frac{\mathrm{1}}{{x}}} \\ $$

  Pg 997      Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004      Pg 1005      Pg 1006   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com