Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1002

Question Number 108757    Answers: 1   Comments: 0

((⋮BeMath⋮)/(▷♥⊲)) lim_(x→0) ((1−(√(cos xcos 2xcos 3xcos 4x...cos nx)))/x^2 ) =?

$$\:\:\frac{\vdots\mathcal{B}{e}\mathcal{M}{ath}\vdots}{\triangleright\heartsuit\triangleleft} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{3}{x}\mathrm{cos}\:\mathrm{4}{x}...\mathrm{cos}\:{nx}}}{{x}^{\mathrm{2}} }\:=? \\ $$

Question Number 108741    Answers: 2   Comments: 0

Solve x^3 −[x]=3 (x∈R)

$${Solve}\:{x}^{\mathrm{3}} −\left[{x}\right]=\mathrm{3} \\ $$$$\left({x}\in{R}\right) \\ $$

Question Number 108738    Answers: 0   Comments: 0

please: ^∗ prove^∗ :::: 1.^(important) lim_(z→1) (ζ (z) −(1/(z−1)) )= γ (euler constant) 2. ^(important) ∫_0 ^( ∞) (cos(x)−(1/(1+x^2 )))(dx/x) =− γ .....M.N.....

$$\:\:\:\:\:\:\:\:{please}:\:\:\:\:\:^{\ast} \mathrm{prove}^{\ast} :::: \\ $$$$\:\:\:\:\:\mathrm{1}.^{\mathrm{important}} \:\:\:\:\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{1}} \left(\zeta\:\left(\mathrm{z}\right)\:−\frac{\mathrm{1}}{\mathrm{z}−\mathrm{1}}\:\right)=\:\gamma\:\:\:\left(\mathrm{euler}\:\mathrm{constant}\right) \\ $$$$\:\:\:\:\mathrm{2}.\:\overset{\mathrm{important}} {\:}\:\:\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{cos}\left(\mathrm{x}\right)−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\frac{\mathrm{dx}}{\mathrm{x}}\:=−\:\gamma \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\mathscr{M}.\mathscr{N}..... \\ $$$$\: \\ $$

Question Number 108728    Answers: 1   Comments: 0

Question Number 108727    Answers: 1   Comments: 0

Question Number 108725    Answers: 1   Comments: 0

The ratio of the profit, cost of materials and labour in the production of an article is 5:7:13 respectively. If the cost of materials is $ 840 more than that of labour, find the total cost of producing the article.

$$\mathrm{The}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{profit},\:\mathrm{cost}\:\mathrm{of}\:\mathrm{materials} \\ $$$$\mathrm{and}\:\mathrm{labour}\:\mathrm{in}\:\mathrm{the}\:\mathrm{production}\:\mathrm{of}\:\mathrm{an}\:\mathrm{article} \\ $$$$\mathrm{is}\:\mathrm{5}:\mathrm{7}:\mathrm{13}\:\mathrm{respectively}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{cost}\:\mathrm{of}\:\mathrm{materials} \\ $$$$\mathrm{is}\:\$\:\mathrm{840}\:\mathrm{more}\:\mathrm{than}\:\mathrm{that}\:\mathrm{of}\:\mathrm{labour},\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{cost}\:\mathrm{of}\:\mathrm{producing}\:\mathrm{the}\:\mathrm{article}. \\ $$

Question Number 108723    Answers: 2   Comments: 1

Question Number 108721    Answers: 0   Comments: 0

Question Number 108719    Answers: 0   Comments: 0

Question Number 108718    Answers: 0   Comments: 0

Question Number 108711    Answers: 1   Comments: 0

calculate U_n =∫_0 ^∞ (−1)^(2[x]−1) cos(n[x])dx find nature of Σ U_n

$$\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{2}\left[\mathrm{x}\right]−\mathrm{1}} \mathrm{cos}\left(\mathrm{n}\left[\mathrm{x}\right]\right)\mathrm{dx} \\ $$$$\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$

Question Number 108710    Answers: 0   Comments: 1

calculate ∫_(−∞) ^∞ (((−1)^x^2 )/((x^2 +x+1)^2 ))dx

$$\mathrm{calculate}\:\:\int_{−\infty} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{x}^{\mathrm{2}} } }{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$

Question Number 108706    Answers: 0   Comments: 0

calculate lim_(n→+∞) (n^2 −n+1)^(1/(ln(n^2 +3n+2)))

$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \left(\mathrm{n}^{\mathrm{2}} −\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{n}^{\mathrm{2}} +\mathrm{3n}+\mathrm{2}\right)}} \\ $$

Question Number 108705    Answers: 1   Comments: 0

if Σ_(k=1) ^n u_k =n(2^n +3) determine lim_(n→+∞) Σ_(k=1) ^n (1/u_k )

$$\mathrm{if}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{u}_{\mathrm{k}} =\mathrm{n}\left(\mathrm{2}^{\mathrm{n}} +\mathrm{3}\right)\:\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{u}_{\mathrm{k}} } \\ $$

Question Number 108699    Answers: 0   Comments: 0

Question Number 108698    Answers: 0   Comments: 0

Question Number 108697    Answers: 1   Comments: 0

Question Number 108692    Answers: 2   Comments: 0

Question Number 108690    Answers: 0   Comments: 0

Question Number 108688    Answers: 0   Comments: 4

prove that Σ_(n=−∞) ^∞ (1/((ax+1)^n )) =−(π/a^n ) lim_(x→−(1/a)) (1/((n−1)!)){cotan(πx)}^((n−1))

$${prove}\:{that}\: \\ $$$$\sum_{{n}=−\infty} ^{\infty} \:\frac{\mathrm{1}}{\left({ax}+\mathrm{1}\right)^{{n}} } \\ $$$$=−\frac{\pi}{{a}^{{n}} }\:{lim}_{{x}\rightarrow−\frac{\mathrm{1}}{{a}}} \:\:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\left\{{cotan}\left(\pi{x}\right)\right\}^{\left({n}−\mathrm{1}\right)} \\ $$

Question Number 108680    Answers: 0   Comments: 1

Question Number 108679    Answers: 1   Comments: 0

Question Number 108678    Answers: 2   Comments: 0

Question Number 108674    Answers: 2   Comments: 0

Solve log_3 (y−2)+log_y (y+5)=2

$$\mathrm{Solve}\:\:\mathrm{log}_{\mathrm{3}} \left(\mathrm{y}−\mathrm{2}\right)+\mathrm{log}_{\mathrm{y}} \left(\mathrm{y}+\mathrm{5}\right)=\mathrm{2} \\ $$

Question Number 108667    Answers: 4   Comments: 0

Question Number 108664    Answers: 1   Comments: 0

∫_0 ^( 2) ∫_0 ^( 2) x^2 sin(xy)dxdy

$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \int_{\mathrm{0}} ^{\:\mathrm{2}} {x}^{\mathrm{2}} {sin}\left({xy}\right){dxdy} \\ $$

  Pg 997      Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004      Pg 1005      Pg 1006   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com