Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1002
Question Number 108757 Answers: 1 Comments: 0
$$\:\:\frac{\vdots\mathcal{B}{e}\mathcal{M}{ath}\vdots}{\triangleright\heartsuit\triangleleft} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{cos}\:{x}\mathrm{cos}\:\mathrm{2}{x}\mathrm{cos}\:\mathrm{3}{x}\mathrm{cos}\:\mathrm{4}{x}...\mathrm{cos}\:{nx}}}{{x}^{\mathrm{2}} }\:=? \\ $$
Question Number 108741 Answers: 2 Comments: 0
$${Solve}\:{x}^{\mathrm{3}} −\left[{x}\right]=\mathrm{3} \\ $$$$\left({x}\in{R}\right) \\ $$
Question Number 108738 Answers: 0 Comments: 0
$$\:\:\:\:\:\:\:\:{please}:\:\:\:\:\:^{\ast} \mathrm{prove}^{\ast} :::: \\ $$$$\:\:\:\:\:\mathrm{1}.^{\mathrm{important}} \:\:\:\:\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{1}} \left(\zeta\:\left(\mathrm{z}\right)\:−\frac{\mathrm{1}}{\mathrm{z}−\mathrm{1}}\:\right)=\:\gamma\:\:\:\left(\mathrm{euler}\:\mathrm{constant}\right) \\ $$$$\:\:\:\:\mathrm{2}.\:\overset{\mathrm{important}} {\:}\:\:\int_{\mathrm{0}} ^{\:\infty} \left(\mathrm{cos}\left(\mathrm{x}\right)−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\frac{\mathrm{dx}}{\mathrm{x}}\:=−\:\gamma \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\mathscr{M}.\mathscr{N}..... \\ $$$$\: \\ $$
Question Number 108728 Answers: 1 Comments: 0
Question Number 108727 Answers: 1 Comments: 0
Question Number 108725 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{ratio}\:\mathrm{of}\:\mathrm{the}\:\mathrm{profit},\:\mathrm{cost}\:\mathrm{of}\:\mathrm{materials} \\ $$$$\mathrm{and}\:\mathrm{labour}\:\mathrm{in}\:\mathrm{the}\:\mathrm{production}\:\mathrm{of}\:\mathrm{an}\:\mathrm{article} \\ $$$$\mathrm{is}\:\mathrm{5}:\mathrm{7}:\mathrm{13}\:\mathrm{respectively}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{cost}\:\mathrm{of}\:\mathrm{materials} \\ $$$$\mathrm{is}\:\$\:\mathrm{840}\:\mathrm{more}\:\mathrm{than}\:\mathrm{that}\:\mathrm{of}\:\mathrm{labour},\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{total}\:\mathrm{cost}\:\mathrm{of}\:\mathrm{producing}\:\mathrm{the}\:\mathrm{article}. \\ $$
Question Number 108723 Answers: 2 Comments: 1
Question Number 108721 Answers: 0 Comments: 0
Question Number 108719 Answers: 0 Comments: 0
Question Number 108718 Answers: 0 Comments: 0
Question Number 108711 Answers: 1 Comments: 0
$$\mathrm{calculate}\:\mathrm{U}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{2}\left[\mathrm{x}\right]−\mathrm{1}} \mathrm{cos}\left(\mathrm{n}\left[\mathrm{x}\right]\right)\mathrm{dx} \\ $$$$\mathrm{find}\:\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} \\ $$
Question Number 108710 Answers: 0 Comments: 1
$$\mathrm{calculate}\:\:\int_{−\infty} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{\mathrm{x}^{\mathrm{2}} } }{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dx} \\ $$
Question Number 108706 Answers: 0 Comments: 0
$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \left(\mathrm{n}^{\mathrm{2}} −\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{n}^{\mathrm{2}} +\mathrm{3n}+\mathrm{2}\right)}} \\ $$
Question Number 108705 Answers: 1 Comments: 0
$$\mathrm{if}\:\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{u}_{\mathrm{k}} =\mathrm{n}\left(\mathrm{2}^{\mathrm{n}} +\mathrm{3}\right)\:\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\mathrm{u}_{\mathrm{k}} } \\ $$
Question Number 108699 Answers: 0 Comments: 0
Question Number 108698 Answers: 0 Comments: 0
Question Number 108697 Answers: 1 Comments: 0
Question Number 108692 Answers: 2 Comments: 0
Question Number 108690 Answers: 0 Comments: 0
Question Number 108688 Answers: 0 Comments: 4
$${prove}\:{that}\: \\ $$$$\sum_{{n}=−\infty} ^{\infty} \:\frac{\mathrm{1}}{\left({ax}+\mathrm{1}\right)^{{n}} } \\ $$$$=−\frac{\pi}{{a}^{{n}} }\:{lim}_{{x}\rightarrow−\frac{\mathrm{1}}{{a}}} \:\:\:\frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\left\{{cotan}\left(\pi{x}\right)\right\}^{\left({n}−\mathrm{1}\right)} \\ $$
Question Number 108680 Answers: 0 Comments: 1
Question Number 108679 Answers: 1 Comments: 0
Question Number 108678 Answers: 2 Comments: 0
Question Number 108674 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\:\mathrm{log}_{\mathrm{3}} \left(\mathrm{y}−\mathrm{2}\right)+\mathrm{log}_{\mathrm{y}} \left(\mathrm{y}+\mathrm{5}\right)=\mathrm{2} \\ $$
Question Number 108667 Answers: 4 Comments: 0
Question Number 108664 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\:\mathrm{2}} \int_{\mathrm{0}} ^{\:\mathrm{2}} {x}^{\mathrm{2}} {sin}\left({xy}\right){dxdy} \\ $$
Pg 997 Pg 998 Pg 999 Pg 1000 Pg 1001 Pg 1002 Pg 1003 Pg 1004 Pg 1005 Pg 1006
Terms of Service
Privacy Policy
Contact: info@tinkutara.com