Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1001
Question Number 118790 Answers: 0 Comments: 0
$$\mathrm{Show}\:\mathrm{by}\:\mathrm{recurence}\:\mathrm{that} \\ $$$$\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}\:} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} ×\mathrm{a}^{\mathrm{k}} ×\mathrm{b}^{\mathrm{n}−\mathrm{k}} \\ $$
Question Number 118781 Answers: 0 Comments: 6
Question Number 118780 Answers: 2 Comments: 0
$$\mathrm{z}\:\mathrm{and}\:\mathrm{z}'\:\in\:\mathbb{C}\:. \\ $$$$\mathrm{show}\:\mathrm{that}: \\ $$$$\mathrm{1}.\:\:\:\:\:\:\overline {\mathrm{zz}'}=\overset{−} {\mathrm{z}}×\overline {\mathrm{z}'} \\ $$$$\mathrm{2}.\:\:\:\:\:\:\:\overline {\left(\frac{\mathrm{z}}{\mathrm{z}'}\right)}=\frac{\overset{−} {\mathrm{z}}}{\overline {\mathrm{z}'}} \\ $$$$ \\ $$
Question Number 118777 Answers: 1 Comments: 0
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}{n}\pi}\:{n}^{{n}} }{{n}^{{n}} ×{e}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{e}}\left(\sqrt{\mathrm{2}{n}\pi}\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{e}} \\ $$
Question Number 207634 Answers: 1 Comments: 0
$${calculer}\:{lim}\:\:{n}\rightarrow+{oo}\:{f}_{{n}} \left({x}\right) \\ $$$${f}_{{n}} \left({x}\right)=\int_{\mathrm{0}^{} } ^{+{oo}} \frac{{ne}^{−{x}} }{\mathrm{1}+{nx}}{dx}\:\:\:/{x}\in\left[\mathrm{0}+{oo}\left[\right.\right. \\ $$
Question Number 118768 Answers: 1 Comments: 0
Question Number 118759 Answers: 0 Comments: 4
$$\mathrm{The}\:\mathrm{first}\:\mathrm{three}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{binomial}\:\mathrm{expansion} \\ $$$$\left({p}−{q}\right)^{{m}} \:,\:\mathrm{in}\:\mathrm{ascending}\:\mathrm{order}\:\mathrm{of}\:{q},\:\mathrm{are}\:\mathrm{denoted} \\ $$$$\mathrm{by}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{respectively}. \\ $$$$\mathrm{Show}\:\mathrm{that}\:\frac{{b}^{\mathrm{2}} }{{ac}}=\frac{\mathrm{2}{m}}{{m}−\mathrm{1}} \\ $$
Question Number 118757 Answers: 2 Comments: 1
Question Number 118753 Answers: 3 Comments: 1
$$\int_{\mathrm{2}} ^{\mathrm{4}} {x}^{\mathrm{3}} {e}^{{x}} {dx} \\ $$
Question Number 118752 Answers: 0 Comments: 0
$$\:\:\int\:\frac{\mathrm{2}\:{dx}}{{x}^{\mathrm{2}} \:\sqrt[{\mathrm{4}\:}]{\left(\mathrm{3}+{x}^{\mathrm{4}} \right)^{\mathrm{5}} }}\:{dx}\: \\ $$
Question Number 118747 Answers: 4 Comments: 0
$${find}\:{the}\:{distance}\:{of}\:{point}\:\left(\mathrm{2},\mathrm{1},−\mathrm{2}\right)\:{to}\:{plane} \\ $$$${passing}\:{through}\:{points}\:\left(−\mathrm{1},\mathrm{2},−\mathrm{3}\right); \\ $$$$\left(\mathrm{0},−\mathrm{4},−\mathrm{2}\right)\:{and}\:\left(\mathrm{1},\mathrm{3},\mathrm{4}\right). \\ $$
Question Number 118740 Answers: 1 Comments: 1
$${f}\left({x}+\mathrm{2}\right)+{f}\left({x}−\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{14} \\ $$$${f}\left({x}\right)=? \\ $$
Question Number 118733 Answers: 4 Comments: 1
Question Number 118727 Answers: 0 Comments: 0
Question Number 118712 Answers: 4 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{inequalities}: \\ $$$$\left.\mathrm{1}\right)\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{n}} >\mathrm{n}!\:\mathrm{for}\:\forall\mathrm{n}\in\mathrm{N}^{\ast} ,\mathrm{n}>\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\mid\mathrm{sinnx}\mid\leqslant\mathrm{n}\mid\mathrm{sinx}\mid\:\mathrm{for}\:\forall\mathrm{n}\in\mathrm{N}^{\ast} \\ $$
Question Number 118711 Answers: 0 Comments: 1
$$\mathrm{Ripasso}\:\mathrm{di}\:\mathrm{matematica}\:\mathrm{per}\:\mathrm{la}\:\mathrm{verifica} \\ $$$$\mathrm{L}'\mathrm{addizione}\:\mathrm{non}\:\mathrm{gode}\:\mathrm{della}\:\mathrm{propriet}\acute {\mathrm{a}}\:\mathrm{invariantiva} \\ $$$$\mathrm{7}+\mathrm{11}=\left(\mathrm{7}−\mathrm{3}\right)+\left(\mathrm{11}−\mathrm{3}\right)\:\:\:\:\mathrm{FALSO} \\ $$$$\mathrm{Propriet}\acute {\mathrm{a}}\:\mathrm{distributiva}\:\mathrm{della}\:\mathrm{moltiplicazione}\:\mathrm{rispetto}\:\mathrm{alla}\:\mathrm{sottrazione} \\ $$$$\mathrm{5}\bullet\left(\mathrm{6}−\mathrm{4}\right)=\mathrm{30}−\mathrm{20} \\ $$$$\mathrm{Risolvere}\:\mathrm{la}\:\mathrm{seguente}\:\mathrm{espressione} \\ $$$$\left[\left(\mathrm{2}+\mathrm{1}\right)^{\mathrm{4}} \bullet\mathrm{2}^{\mathrm{7}} \bullet\mathrm{3}^{\mathrm{3}} \right]:\left(\mathrm{6}^{\mathrm{10}} :\mathrm{6}^{\mathrm{8}} \right)^{\mathrm{3}} −\mathrm{6}=\left[\mathrm{3}^{\mathrm{4}} \bullet\mathrm{2}^{\mathrm{7}} \bullet\mathrm{3}^{\mathrm{3}} \right]:\left(\mathrm{6}^{\mathrm{2}} \right)^{\mathrm{3}} −\mathrm{6}=\left[\mathrm{3}^{\mathrm{7}} \bullet\mathrm{2}^{\mathrm{7}} \right]:\mathrm{6}^{\mathrm{6}} −\mathrm{6}= \\ $$$$=\mathrm{6}^{\mathrm{7}} :\mathrm{6}^{\mathrm{6}} −\mathrm{6} \\ $$$$\mathrm{Es}.\:\mathrm{184}\:\mathrm{pag}.\mathrm{31} \\ $$$$\left\{\left[\mathrm{2}+\mathrm{2}\bullet\left(\mathrm{5}+\mathrm{4}\right)\bullet\left(\mathrm{8}−\mathrm{5}\right)\right]:\left(\mathrm{4}\bullet\mathrm{7}\right)\right\}^{\mathrm{5}} =\left\{\left[\mathrm{2}+\mathrm{2}\bullet\mathrm{9}\bullet\mathrm{3}\right]:\mathrm{28}\right\}^{\mathrm{5}} =\left\{\left[\mathrm{2}+\mathrm{54}\right]:\mathrm{28}\right\}^{\mathrm{5}} =\left\{\mathrm{56}:\mathrm{28}\right\}^{\mathrm{5}} = \\ $$$$\left\{\mathrm{2}\right\}^{\mathrm{5}} =\mathrm{2}^{\mathrm{5}} =\mathrm{32} \\ $$
Question Number 118710 Answers: 2 Comments: 0
Question Number 118705 Answers: 2 Comments: 0
$$ \\ $$$$ \\ $$$$...\:\blacklozenge\mathrm{Advanced}\:\mathrm{Calculus}\blacklozenge... \\ $$$$ \\ $$$$\mathrm{Evaluate}:: \\ $$$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\:\mathrm{1}\:} \frac{\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx} \\ $$$$ \\ $$$$...\spadesuit\boldsymbol{\mathrm{L}\phi\mathrm{rD}}\:\boldsymbol{\varnothing\mathrm{sE}}\spadesuit... \\ $$$$ \\ $$$$...\clubsuit\boldsymbol{\mathrm{GooD}}\:\boldsymbol{\mathrm{LucK}}\clubsuit \\ $$
Question Number 118701 Answers: 1 Comments: 2
$${What}\:{is}\:{maximum}\:{value} \\ $$$$\:{x}^{\mathrm{3}} {y}^{\mathrm{3}} \:+\mathrm{3}{xy}\:{when}\:{x}+{y}\:=\:\mathrm{8}? \\ $$
Question Number 118694 Answers: 2 Comments: 0
$${How}\:{many}\:{sets}\:{of}\:\mathrm{3}\:{numbers}\:{each}\:{can} \\ $$$${be}\:{formed}\:{from}\:{the}\:{numbers}\:\left\{\:\mathrm{1},\mathrm{2},\mathrm{3},...,\mathrm{20}\:\right\}\:{if}\:{no} \\ $$$${two}\:{consecutive}\:{numbers}\:{are}\:{to}\:{be}\:{in}\:{a}\:{set}\:? \\ $$
Question Number 118690 Answers: 3 Comments: 0
Question Number 118685 Answers: 0 Comments: 1
$$\boldsymbol{{Converting}}\:\boldsymbol{{decimal}}\:\boldsymbol{{numbers}}\:\boldsymbol{{to}}\:\boldsymbol{{base}}\:\mathrm{10} \\ $$
Question Number 118668 Answers: 1 Comments: 0
$$\:\:\int\:\frac{{x}\mid\mathrm{sin}\:{x}\mid}{\mathrm{1}+\mathrm{cos}\:^{\mathrm{2}} {x}}\:{dx}\:? \\ $$
Question Number 118681 Answers: 2 Comments: 0
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{{x}}\:−\:\sqrt{\mathrm{sin}\:{x}}}{{x}^{\mathrm{2}} \:\sqrt{{x}}}\:=? \\ $$
Question Number 118679 Answers: 2 Comments: 0
Question Number 118665 Answers: 1 Comments: 0
Pg 996 Pg 997 Pg 998 Pg 999 Pg 1000 Pg 1001 Pg 1002 Pg 1003 Pg 1004 Pg 1005
Terms of Service
Privacy Policy
Contact: info@tinkutara.com