Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1001
Question Number 116902 Answers: 0 Comments: 0
Question Number 116900 Answers: 0 Comments: 0
Question Number 116891 Answers: 2 Comments: 0
$$\mathrm{Proof}\:\mathrm{that}\:\frac{\mathrm{4}\left(\mathrm{cos}\:^{\mathrm{4}} \left({a}\right)+\mathrm{sin}\:^{\mathrm{4}} \left({a}\right)\right)}{\mathrm{cos}\:^{\mathrm{4}} \left({a}\right)−\mathrm{sin}\:^{\mathrm{4}} \left({a}\right)}\:=\:\left(\mathrm{3}+\mathrm{cos}\:\left(\mathrm{4}{a}\right)\right)\mathrm{sec}\:\left(\mathrm{2}{a}\right)\: \\ $$
Question Number 116887 Answers: 2 Comments: 1
$$\mathrm{Let}\:{k}=\mathrm{sin}\:\mathrm{1}°×\mathrm{sin}\:\mathrm{3}°×\mathrm{sin}\:\mathrm{5}°×\ldots×\mathrm{sin}\:\mathrm{89}° \\ $$$$\mathrm{Find}\:\mathrm{log}_{\mathrm{2}} {k}^{\mathrm{2}} . \\ $$
Question Number 116884 Answers: 1 Comments: 0
Question Number 116883 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{m}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{to} \\ $$$$\mathrm{partition}\:\mathrm{10}\:\mathrm{students}\:\mathrm{into}\:\mathrm{four}\:\mathrm{team} \\ $$$$\mathrm{so}\:\mathrm{that}\:\mathrm{two}\:\mathrm{team}\:\mathrm{contains}\:\mathrm{3}\:\mathrm{students} \\ $$$$\mathrm{and}\:\mathrm{two}\:\mathrm{team}\:\mathrm{contains}\:\mathrm{2}\:\mathrm{students}\:. \\ $$
Question Number 116881 Answers: 3 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{m}\:\mathrm{of}\:\mathrm{non}\:\mathrm{negative} \\ $$$$\mathrm{integer}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{18} \\ $$$$ \\ $$
Question Number 116859 Answers: 2 Comments: 1
$${li}\underset{{x}\rightarrow\infty} {{m}}\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{5}^{{x}} }=? \\ $$
Question Number 116854 Answers: 4 Comments: 0
$$\:\:\:...\:\:\:{calculus}\:\:\:{elementary}\:\:{algebra}\:...\:\: \\ $$$$ \\ $$$$ \\ $$$$\:{please}\:{solve}\::: \\ $$$$ \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{6}{x}+\mathrm{9}}\:+\sqrt[{\mathrm{3}}]{\mathrm{7}−\mathrm{7}{x}}\:+\sqrt[{\mathrm{3}}]{{x}−\mathrm{8}}\:=\mathrm{2} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:...{m}.{n}.{july}.\mathrm{1970}... \\ $$$$\: \\ $$
Question Number 116853 Answers: 0 Comments: 0
Question Number 116847 Answers: 1 Comments: 1
Question Number 116846 Answers: 0 Comments: 2
$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{calculus}... \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$ \\ $$$$\:\: \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \sqrt{\frac{\left(\mathrm{2}^{{x}} −\mathrm{1}\right){sin}^{\mathrm{3}} \left({x}\right)}{\left(\mathrm{2}^{{x}} +\mathrm{1}\right)\left({sin}^{\mathrm{3}} \left({x}\right)+{cos}^{\mathrm{3}} \left({x}\right)\right)}}\:\:{dx}<\frac{\pi}{\mathrm{8}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$$$ \\ $$
Question Number 116845 Answers: 1 Comments: 1
Question Number 116844 Answers: 1 Comments: 0
$$\int\:\frac{\mathrm{8x}+\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2x}\right)}{\:\sqrt{\mathrm{1}−\mathrm{4x}^{\mathrm{2}} }}\:\mathrm{dx}\: \\ $$
Question Number 116843 Answers: 0 Comments: 1
Question Number 116841 Answers: 0 Comments: 1
Question Number 116832 Answers: 3 Comments: 0
$$\mathrm{If}\:\mathrm{19}\:\mathrm{sin}\:\mathrm{2x}\:=\:\mathrm{37}\:\mathrm{cos}\:\mathrm{2x}+\mathrm{38}\:\mathrm{sin}\:^{\mathrm{2}} \mathrm{x} \\ $$$$\mathrm{then}\:\mathrm{tan}\:\mathrm{x}\:=\:\_\_ \\ $$
Question Number 116824 Answers: 2 Comments: 0
$$\mathrm{Given}\:\mathrm{a}>\mathrm{b}>\mathrm{0}\:,\:\mathrm{a\&b}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{a}^{\mathrm{2}} −\mathrm{ab}+\mathrm{b}^{\mathrm{2}} =\mathrm{7}\:\mathrm{and}\:\mathrm{a}−\mathrm{ab}+\mathrm{b}=−\mathrm{1}. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \\ $$
Question Number 116822 Answers: 3 Comments: 1
$$\:\mathrm{what}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\sqrt{{i}}\:=? \\ $$
Question Number 116820 Answers: 0 Comments: 0
$${prove}\:{that}\:{lim}\:{f}\left({x}\right)={L}\:{and}\:{lim}\:{f}\left({x}\right)={M}, \\ $$$${then}\:{L}={M} \\ $$
Question Number 116819 Answers: 1 Comments: 0
$${prove}\:{the}\:{limit} \\ $$$${li}\underset{{x}−\rangle\mathrm{2}} {{m}}\sqrt{\mathrm{2}{x}}=\mathrm{2} \\ $$
Question Number 116872 Answers: 1 Comments: 0
Question Number 116815 Answers: 2 Comments: 0
$$\int\:\frac{\mathrm{dx}}{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{4}\right)}\:=? \\ $$
Question Number 116813 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\underset{\mathrm{1}} {\overset{\sqrt{\mathrm{3}}} {\int}}\:\frac{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$
Question Number 116803 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right),\:\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right) \\ $$$$\begin{cases}{\frac{\partial\mathrm{Z}}{\partial\mathrm{y}}−\frac{\partial\mathrm{Y}}{\partial\mathrm{z}}=\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\\{\frac{\partial\mathrm{Z}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{z}}=−\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}}\\{\frac{\partial\mathrm{Y}}{\partial\mathrm{x}}−\frac{\partial\mathrm{X}}{\partial\mathrm{y}}=\mathrm{z}\left(\mathrm{2x}−\mathrm{y}\right)}\end{cases}\:\mathrm{where}\:\begin{cases}{\mathrm{X}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Y}\left(\mathrm{x},\mathrm{y},\mathrm{0}\right)=\mathrm{0}}\\{\mathrm{Z}\left(\mathrm{x},\mathrm{y},\mathrm{z}\right)=\mathrm{0}}\end{cases} \\ $$
Question Number 116806 Answers: 2 Comments: 0
$$\mathrm{Hi} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\:\int_{-\infty} ^{+\infty} -\mathrm{e}^{-\mathrm{x}^{\mathrm{2}} } \mathrm{dx}=\sqrt{\pi} \\ $$$$\mathrm{Thanks}\:\mathrm{beforehand} \\ $$$$ \\ $$
Pg 996 Pg 997 Pg 998 Pg 999 Pg 1000 Pg 1001 Pg 1002 Pg 1003 Pg 1004 Pg 1005
Terms of Service
Privacy Policy
Contact: info@tinkutara.com