Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1001

Question Number 119762    Answers: 3   Comments: 0

calculate ∫_0 ^∞ ((x^4 dx)/((2x+1)^5 (3x+1)^8 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{x}^{\mathrm{4}} \mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{8}} } \\ $$

Question Number 119757    Answers: 0   Comments: 0

For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation} \\ $$

Question Number 119755    Answers: 0   Comments: 2

Question Number 119754    Answers: 2   Comments: 3

find Σ_(n=1) ^∞ (u_n /(n!)) if u_n =u_(n+1) +u_(n−1)

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}_{{n}} }{{n}!}\:{if}\:\:{u}_{{n}} \:={u}_{{n}+\mathrm{1}} +{u}_{{n}−\mathrm{1}} \\ $$

Question Number 119752    Answers: 1   Comments: 0

find I_λ =∫_0 ^∞ ((ch(1+λcosx))/((x^2 +1)^2 ))dx (λ real >0)

$${find}\:{I}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ch}\left(\mathrm{1}+\lambda{cosx}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left(\lambda\:{real}\:>\mathrm{0}\right) \\ $$

Question Number 119750    Answers: 1   Comments: 0

Π_(k=1) ^(1019) [((2k)/(2k−1))]=?

$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{1019}} {\prod}}\left[\frac{\mathrm{2k}}{\mathrm{2k}−\mathrm{1}}\right]=? \\ $$

Question Number 119747    Answers: 1   Comments: 0

Suppose that 7 blue balls , 8 red balls and 9 green balls should be put into three boxes labeled 1,2 and 3, so that any box contains at least one balls of each colour. How many ways can this arrangement be done?

$${Suppose}\:{that}\:\mathrm{7}\:{blue}\:{balls}\:,\:\mathrm{8}\:{red}\:{balls}\:{and}\:\mathrm{9}\:{green} \\ $$$${balls}\:{should}\:{be}\:{put}\:{into}\:{three}\:{boxes}\:{labeled} \\ $$$$\mathrm{1},\mathrm{2}\:{and}\:\mathrm{3},\:{so}\:{that}\:{any}\:{box}\:{contains}\:{at}\:{least} \\ $$$${one}\:{balls}\:{of}\:{each}\:{colour}.\:{How}\:{many}\:{ways} \\ $$$${can}\:{this}\:{arrangement}\:{be}\:{done}? \\ $$

Question Number 119814    Answers: 3   Comments: 0

If a,b,c and d is real numbers satisfy (a/b)=(2/3), (c/d)=(4/5), (d/b)=(6/7) then (a/c) =?

$${If}\:{a},{b},{c}\:{and}\:{d}\:{is}\:{real}\:{numbers} \\ $$$${satisfy}\:\frac{{a}}{{b}}=\frac{\mathrm{2}}{\mathrm{3}},\:\frac{{c}}{{d}}=\frac{\mathrm{4}}{\mathrm{5}},\:\frac{{d}}{{b}}=\frac{\mathrm{6}}{\mathrm{7}} \\ $$$${then}\:\frac{{a}}{{c}}\:=? \\ $$

Question Number 119733    Answers: 1   Comments: 5

Question Number 119815    Answers: 1   Comments: 0

Given f(x+y)=4f(x).f(y) for all real numbers x and y. If f(3)=32 then f(1)=_

$${Given}\:{f}\left({x}+{y}\right)=\mathrm{4}{f}\left({x}\right).{f}\left({y}\right)\:{for} \\ $$$${all}\:{real}\:{numbers}\:{x}\:{and}\:{y}. \\ $$$${If}\:{f}\left(\mathrm{3}\right)=\mathrm{32}\:{then}\:{f}\left(\mathrm{1}\right)=\_ \\ $$

Question Number 119725    Answers: 3   Comments: 1

lim_(x→(π/4)) ((4(√2)−(cos x+sin x)^5 )/((cos x−sin x)^2 )) =?

$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{4}\sqrt{\mathrm{2}}−\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{5}} }{\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)^{\mathrm{2}} }\:=? \\ $$

Question Number 119724    Answers: 2   Comments: 0

Let x,y,z be non negative real numbers such that x+y+z=1. Find the extremum of F = 2x^2 +y+3z^2 .

$${Let}\:{x},{y},{z}\:{be}\:{non}\:{negative}\:{real}\:{numbers} \\ $$$${such}\:{that}\:{x}+{y}+{z}=\mathrm{1}.\:{Find}\:{the}\:{extremum} \\ $$$${of}\:{F}\:=\:\mathrm{2}{x}^{\mathrm{2}} +{y}+\mathrm{3}{z}^{\mathrm{2}} \:. \\ $$

Question Number 119713    Answers: 1   Comments: 3

If 3x+(1/(2x))=6 find 8x^3 +(1/(27x^3 ))

$$\mathrm{If}\:\mathrm{3x}+\frac{\mathrm{1}}{\mathrm{2x}}=\mathrm{6}\:\mathrm{find}\:\mathrm{8x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{27x}^{\mathrm{3}} } \\ $$

Question Number 119702    Answers: 0   Comments: 0

Question Number 119706    Answers: 0   Comments: 4

hello i hop all of you doing well can somoene help me too find lecture about dilogarithmes,trilogarithmes identities god bless you

$${hello}\:{i}\:{hop}\:{all}\:{of}\:{you}\:{doing}\:{well} \\ $$$${can}\:{somoene}\:{help}\:{me}\:{too}\:{find}\:{lecture} \\ $$$${about}\:{dilogarithmes},{trilogarithmes} \\ $$$${identities}\: \\ $$$${god}\:{bless}\:{you} \\ $$

Question Number 119696    Answers: 2   Comments: 0

For a<b then ∫_a ^b (x−a)(x−b) dx equal to _

$${For}\:{a}<{b}\:{then}\:\underset{{a}} {\overset{{b}} {\int}}\:\left({x}−{a}\right)\left({x}−{b}\right)\:{dx}\: \\ $$$${equal}\:{to}\:\_ \\ $$

Question Number 119692    Answers: 3   Comments: 1

If x is real number satisfying 3x+(1/(2x))=4 , find the value of 27x^3 +(1/(8x^3 )) .

$${If}\:{x}\:{is}\:{real}\:{number}\:{satisfying} \\ $$$$\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{2}{x}}=\mathrm{4}\:,\:{find}\:{the}\:{value}\:{of} \\ $$$$\mathrm{27}{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{8}{x}^{\mathrm{3}} }\:. \\ $$

Question Number 119685    Answers: 0   Comments: 0

Question Number 119684    Answers: 1   Comments: 2

Question Number 119681    Answers: 4   Comments: 0

∫_0 ^π (√((1+cos2x)/2)) dx ∫_0 ^∞ [ne^(−x) ]dx

$$\int_{\mathrm{0}} ^{\pi} \sqrt{\frac{\mathrm{1}+{cos}\mathrm{2}{x}}{\mathrm{2}}}\:{dx} \\ $$$$\int_{\mathrm{0}} ^{\infty} \left[{ne}^{−{x}} \right]{dx} \\ $$

Question Number 119679    Answers: 1   Comments: 0

2^1 ×2^2 ×2^3 ×...×2^n =(0.5)^(−45) n=?

$$\mathrm{2}^{\mathrm{1}} ×\mathrm{2}^{\mathrm{2}} ×\mathrm{2}^{\mathrm{3}} ×...×\mathrm{2}^{{n}} =\left(\mathrm{0}.\mathrm{5}\right)^{−\mathrm{45}} \\ $$$${n}=? \\ $$

Question Number 119661    Answers: 0   Comments: 2

point A is at the bottom of a rough plane which is inclined at an angle Θ to the horizontal. A body of mass m is projected from A along and end up a line of greatest slope (along the plane). the cofficient of friction between the body and the plane is ϕ. it then comes to rest at point B at a distance X from A. obtain the expression for (a) the workdone against friction when the body moves from A to B and back to A (ii) initial speed of the body (iii) the speed of the body on its return to A

$${point}\:{A}\:{is}\:{at}\:{the}\:{bottom}\:{of}\:{a}\:{rough}\: \\ $$$${plane}\:{which}\:{is}\:{inclined}\:{at}\:{an}\:{angle}\: \\ $$$$\Theta\:{to}\:{the}\:{horizontal}.\:{A}\:{body}\:{of}\:{mass}\: \\ $$$${m}\:{is}\:{projected}\:{from}\:{A}\:{along}\:{and}\:{end}\: \\ $$$${up}\:{a}\:{line}\:{of}\:{greatest}\:{slope}\:\left({along}\:{the}\right. \\ $$$$\left.{plane}\right).\:{the}\:{cofficient}\:{of}\:{friction}\:{between} \\ $$$${the}\:{body}\:{and}\:{the}\:{plane}\:{is}\:\varphi.\:{it}\:{then}\: \\ $$$${comes}\:{to}\:{rest}\:{at}\:{point}\:{B}\:{at}\:{a}\:{distance}\:{X}\: \\ $$$${from}\:{A}.\:{obtain}\:{the}\:{expression}\:{for} \\ $$$$\left({a}\right)\:{the}\:{workdone}\:{against}\:{friction} \\ $$$${when}\:{the}\:{body}\:{moves}\:{from}\:{A}\:{to}\:{B} \\ $$$${and}\:{back}\:{to}\:{A} \\ $$$$\left({ii}\right)\:{initial}\:{speed}\:{of}\:{the}\:{body} \\ $$$$\left({iii}\right)\:{the}\:{speed}\:{of}\:{the}\:{body}\:{on}\:{its}\: \\ $$$${return}\:{to}\:{A} \\ $$

Question Number 119659    Answers: 2   Comments: 0

∫_0 ^1 [(4x−1)f(12x^2 −6x)]dx=?

$$\int_{\mathrm{0}} ^{\mathrm{1}} \left[\left(\mathrm{4}{x}−\mathrm{1}\right){f}\left(\mathrm{12}{x}^{\mathrm{2}} −\mathrm{6}{x}\right)\right]{dx}=? \\ $$

Question Number 119657    Answers: 1   Comments: 2

Suppose that the greatest common divisor of the positive integers a,b and c is 1 and ((ab)/(a−b)) = c . Prove that a−b is a perfect square

$${Suppose}\:{that}\:{the}\:{greatest}\:{common}\:{divisor}\:{of} \\ $$$${the}\:{positive}\:{integers}\:{a},{b}\:{and}\:{c}\:{is}\:\mathrm{1}\:{and} \\ $$$$\frac{{ab}}{{a}−{b}}\:=\:{c}\:.\:{Prove}\:{that}\:{a}−{b}\:{is}\:{a} \\ $$$${perfect}\:{square} \\ $$

Question Number 119648    Answers: 1   Comments: 1

Particles of mass m_1 and m_2 (m_2 >m_1 ) are connected by a light inextensible string passing over a smooth fixed pulley. initially both masses hang vertically with mass m_(2 ) at a height X above the floor. if the system is released from rest. with what speed will mass m_2 hit the floor and the mass m_1 will rise a further distance of [(((m_2 −m_1 )x)/(m_1 +m_2 ))] after this occur.

$${Particles}\:{of}\:{mass}\:{m}_{\mathrm{1}} \:{and}\:{m}_{\mathrm{2}} \:\left({m}_{\mathrm{2}} >{m}_{\mathrm{1}} \right) \\ $$$${are}\:{connected}\:{by}\:{a}\:{light}\:{inextensible} \\ $$$${string}\:{passing}\:{over}\:{a}\:{smooth}\:{fixed}\: \\ $$$${pulley}.\:{initially}\:{both}\:{masses}\:{hang} \\ $$$${vertically}\:{with}\:{mass}\:{m}_{\mathrm{2}\:} {at}\:{a}\:{height} \\ $$$${X}\:{above}\:{the}\:{floor}.\:{if}\:{the}\:{system}\:{is}\: \\ $$$${released}\:{from}\:{rest}.\:{with}\:{what}\:{speed} \\ $$$${will}\:{mass}\:{m}_{\mathrm{2}} \:{hit}\:{the}\:{floor}\:{and}\:{the} \\ $$$${mass}\:{m}_{\mathrm{1}} \:{will}\:{rise}\:{a}\:{further}\:{distance}\:{of}\: \\ $$$$\left[\frac{\left({m}_{\mathrm{2}} −{m}_{\mathrm{1}} \right){x}}{{m}_{\mathrm{1}} +{m}_{\mathrm{2}} }\right]\:{after}\:{this}\:{occur}. \\ $$

Question Number 119647    Answers: 1   Comments: 0

  Pg 996      Pg 997      Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004      Pg 1005   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com