Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1000

Question Number 119797    Answers: 0   Comments: 0

Q1 Let M_2 be the set of square matrices of order 2 over the real number system and R={(A,B)∈M_2 ×M_2 ∣A=P^( T) BP for some non-singular P ∈M} Then R is (A) symmetric (B) transitive (C) reflexive on M_2 (D) not an equivalence relation on M_2 Q2 For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

$$\mathrm{Q1} \\ $$$$\mathrm{Let}\:{M}_{\mathrm{2}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{square}\:\mathrm{matrices}\:\mathrm{of}\:\mathrm{order}\:\mathrm{2}\:\mathrm{over} \\ $$$$\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{system}\:\mathrm{and} \\ $$$$\:\:\:\:\:\mathcal{R}=\left\{\left({A},{B}\right)\in{M}_{\mathrm{2}} ×{M}_{\mathrm{2}} \mid{A}={P}^{\:\mathrm{T}} {BP}\:\:\mathrm{for}\:\mathrm{some}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{non}-\mathrm{singular}\:{P}\:\in{M}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{reflexive}\:\mathrm{on}\:{M}_{\mathrm{2}} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{not}\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation}\:\mathrm{on}\:{M}_{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{Q2} \\ $$$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation} \\ $$

Question Number 119795    Answers: 4   Comments: 0

Solve in real numbers the system of equations { (((3x+y)(x+3y)(√(xy)) =14)),(((x+y)(x^2 +14xy+y^2 )= 36)) :}

$${Solve}\:{in}\:{real}\:{numbers}\:{the}\:{system}\:{of} \\ $$$${equations}\:\begin{cases}{\left(\mathrm{3}{x}+{y}\right)\left({x}+\mathrm{3}{y}\right)\sqrt{{xy}}\:=\mathrm{14}}\\{\left({x}+{y}\right)\left({x}^{\mathrm{2}} +\mathrm{14}{xy}+{y}^{\mathrm{2}} \right)=\:\mathrm{36}}\end{cases}\: \\ $$

Question Number 119790    Answers: 2   Comments: 0

Let x,y,z be nonnegative real numbers, which satisfy x+y+z=1 Find minimum value of Q=(√(2−x)) + (√(2−y)) + (√(2−z)) .

$${Let}\:{x},{y},{z}\:{be}\:{nonnegative}\:{real} \\ $$$${numbers},\:{which}\:{satisfy}\:{x}+{y}+{z}=\mathrm{1} \\ $$$${Find}\:{minimum}\:{value}\:{of}\: \\ $$$${Q}=\sqrt{\mathrm{2}−{x}}\:+\:\sqrt{\mathrm{2}−{y}}\:+\:\sqrt{\mathrm{2}−{z}}\:. \\ $$

Question Number 119784    Answers: 2   Comments: 0

∫ (dx/( (√((4x−x^2 )^3 ))))

$$\:\:\int\:\frac{{dx}}{\:\sqrt{\left(\mathrm{4}{x}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} }} \\ $$$$ \\ $$

Question Number 119774    Answers: 1   Comments: 0

Question Number 119773    Answers: 3   Comments: 0

∫_(−4) ^4 x^3 (√(16−x^2 )) sec x dx

$$\underset{−\mathrm{4}} {\overset{\mathrm{4}} {\int}}\:{x}^{\mathrm{3}} \sqrt{\mathrm{16}−{x}^{\mathrm{2}} \:}\:\mathrm{sec}\:{x}\:{dx}\: \\ $$

Question Number 119821    Answers: 3   Comments: 0

∫_(−3) ^0 ((6x−6)/( (√(x^2 −2x+1)))) dx =?

$$\:\underset{−\mathrm{3}} {\overset{\mathrm{0}} {\int}}\:\frac{\mathrm{6}{x}−\mathrm{6}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{1}}}\:{dx}\:=? \\ $$

Question Number 119762    Answers: 3   Comments: 0

calculate ∫_0 ^∞ ((x^4 dx)/((2x+1)^5 (3x+1)^8 ))

$$\mathrm{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{x}^{\mathrm{4}} \mathrm{dx}}{\left(\mathrm{2x}+\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{3x}+\mathrm{1}\right)^{\mathrm{8}} } \\ $$

Question Number 119757    Answers: 0   Comments: 0

For any integer n, let I_n be the interval (n, n+1). Define R={(x, y)∈R∣both x, y ∈ I_n for some n∈Z} Then R is (A) reflexive on R (B) symmetric (C) transitive (D) an equivalence relation

$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation} \\ $$

Question Number 119755    Answers: 0   Comments: 2

Question Number 119754    Answers: 2   Comments: 3

find Σ_(n=1) ^∞ (u_n /(n!)) if u_n =u_(n+1) +u_(n−1)

$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{u}_{{n}} }{{n}!}\:{if}\:\:{u}_{{n}} \:={u}_{{n}+\mathrm{1}} +{u}_{{n}−\mathrm{1}} \\ $$

Question Number 119752    Answers: 1   Comments: 0

find I_λ =∫_0 ^∞ ((ch(1+λcosx))/((x^2 +1)^2 ))dx (λ real >0)

$${find}\:{I}_{\lambda} =\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ch}\left(\mathrm{1}+\lambda{cosx}\right)}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$\left(\lambda\:{real}\:>\mathrm{0}\right) \\ $$

Question Number 119750    Answers: 1   Comments: 0

Π_(k=1) ^(1019) [((2k)/(2k−1))]=?

$$\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{1019}} {\prod}}\left[\frac{\mathrm{2k}}{\mathrm{2k}−\mathrm{1}}\right]=? \\ $$

Question Number 119747    Answers: 1   Comments: 0

Suppose that 7 blue balls , 8 red balls and 9 green balls should be put into three boxes labeled 1,2 and 3, so that any box contains at least one balls of each colour. How many ways can this arrangement be done?

$${Suppose}\:{that}\:\mathrm{7}\:{blue}\:{balls}\:,\:\mathrm{8}\:{red}\:{balls}\:{and}\:\mathrm{9}\:{green} \\ $$$${balls}\:{should}\:{be}\:{put}\:{into}\:{three}\:{boxes}\:{labeled} \\ $$$$\mathrm{1},\mathrm{2}\:{and}\:\mathrm{3},\:{so}\:{that}\:{any}\:{box}\:{contains}\:{at}\:{least} \\ $$$${one}\:{balls}\:{of}\:{each}\:{colour}.\:{How}\:{many}\:{ways} \\ $$$${can}\:{this}\:{arrangement}\:{be}\:{done}? \\ $$

Question Number 119814    Answers: 3   Comments: 0

If a,b,c and d is real numbers satisfy (a/b)=(2/3), (c/d)=(4/5), (d/b)=(6/7) then (a/c) =?

$${If}\:{a},{b},{c}\:{and}\:{d}\:{is}\:{real}\:{numbers} \\ $$$${satisfy}\:\frac{{a}}{{b}}=\frac{\mathrm{2}}{\mathrm{3}},\:\frac{{c}}{{d}}=\frac{\mathrm{4}}{\mathrm{5}},\:\frac{{d}}{{b}}=\frac{\mathrm{6}}{\mathrm{7}} \\ $$$${then}\:\frac{{a}}{{c}}\:=? \\ $$

Question Number 119733    Answers: 1   Comments: 5

Question Number 119815    Answers: 1   Comments: 0

Given f(x+y)=4f(x).f(y) for all real numbers x and y. If f(3)=32 then f(1)=_

$${Given}\:{f}\left({x}+{y}\right)=\mathrm{4}{f}\left({x}\right).{f}\left({y}\right)\:{for} \\ $$$${all}\:{real}\:{numbers}\:{x}\:{and}\:{y}. \\ $$$${If}\:{f}\left(\mathrm{3}\right)=\mathrm{32}\:{then}\:{f}\left(\mathrm{1}\right)=\_ \\ $$

Question Number 119725    Answers: 3   Comments: 1

lim_(x→(π/4)) ((4(√2)−(cos x+sin x)^5 )/((cos x−sin x)^2 )) =?

$$\:\underset{{x}\rightarrow\frac{\pi}{\mathrm{4}}} {\mathrm{lim}}\:\frac{\mathrm{4}\sqrt{\mathrm{2}}−\left(\mathrm{cos}\:{x}+\mathrm{sin}\:{x}\right)^{\mathrm{5}} }{\left(\mathrm{cos}\:{x}−\mathrm{sin}\:{x}\right)^{\mathrm{2}} }\:=? \\ $$

Question Number 119724    Answers: 2   Comments: 0

Let x,y,z be non negative real numbers such that x+y+z=1. Find the extremum of F = 2x^2 +y+3z^2 .

$${Let}\:{x},{y},{z}\:{be}\:{non}\:{negative}\:{real}\:{numbers} \\ $$$${such}\:{that}\:{x}+{y}+{z}=\mathrm{1}.\:{Find}\:{the}\:{extremum} \\ $$$${of}\:{F}\:=\:\mathrm{2}{x}^{\mathrm{2}} +{y}+\mathrm{3}{z}^{\mathrm{2}} \:. \\ $$

Question Number 119713    Answers: 1   Comments: 3

If 3x+(1/(2x))=6 find 8x^3 +(1/(27x^3 ))

$$\mathrm{If}\:\mathrm{3x}+\frac{\mathrm{1}}{\mathrm{2x}}=\mathrm{6}\:\mathrm{find}\:\mathrm{8x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{27x}^{\mathrm{3}} } \\ $$

Question Number 119702    Answers: 0   Comments: 0

Question Number 119706    Answers: 0   Comments: 4

hello i hop all of you doing well can somoene help me too find lecture about dilogarithmes,trilogarithmes identities god bless you

$${hello}\:{i}\:{hop}\:{all}\:{of}\:{you}\:{doing}\:{well} \\ $$$${can}\:{somoene}\:{help}\:{me}\:{too}\:{find}\:{lecture} \\ $$$${about}\:{dilogarithmes},{trilogarithmes} \\ $$$${identities}\: \\ $$$${god}\:{bless}\:{you} \\ $$

Question Number 119696    Answers: 2   Comments: 0

For a<b then ∫_a ^b (x−a)(x−b) dx equal to _

$${For}\:{a}<{b}\:{then}\:\underset{{a}} {\overset{{b}} {\int}}\:\left({x}−{a}\right)\left({x}−{b}\right)\:{dx}\: \\ $$$${equal}\:{to}\:\_ \\ $$

Question Number 119692    Answers: 3   Comments: 1

If x is real number satisfying 3x+(1/(2x))=4 , find the value of 27x^3 +(1/(8x^3 )) .

$${If}\:{x}\:{is}\:{real}\:{number}\:{satisfying} \\ $$$$\mathrm{3}{x}+\frac{\mathrm{1}}{\mathrm{2}{x}}=\mathrm{4}\:,\:{find}\:{the}\:{value}\:{of} \\ $$$$\mathrm{27}{x}^{\mathrm{3}} +\frac{\mathrm{1}}{\mathrm{8}{x}^{\mathrm{3}} }\:. \\ $$

Question Number 119685    Answers: 0   Comments: 0

Question Number 119684    Answers: 1   Comments: 2

  Pg 995      Pg 996      Pg 997      Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com