Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1000

Question Number 108947    Answers: 1   Comments: 0

Question Number 108936    Answers: 1   Comments: 1

Question Number 108931    Answers: 2   Comments: 1

Question Number 108930    Answers: 2   Comments: 0

Question Number 108927    Answers: 1   Comments: 1

Question Number 108924    Answers: 0   Comments: 0

Question Number 108922    Answers: 1   Comments: 1

Question Number 108921    Answers: 3   Comments: 0

a. ∫((sin^3 4x)/(cos^8 4x))dx b. ∫_(−(π/2)) ^(π/2) (x^2 e^(cosx) −2x)sinxdx

$$\mathrm{a}.\:\:\int\frac{\mathrm{sin}^{\mathrm{3}} \mathrm{4x}}{\mathrm{cos}^{\mathrm{8}} \mathrm{4x}}\mathrm{dx} \\ $$$$\mathrm{b}.\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{x}^{\mathrm{2}} \mathrm{e}^{\mathrm{cosx}} −\mathrm{2x}\right)\mathrm{sinxdx} \\ $$

Question Number 108920    Answers: 2   Comments: 0

Question Number 108917    Answers: 1   Comments: 0

A woman purchased a number of plates for$150.00. Four of the plates got broken while transporting themto her shop. By selling the remaining plates at a profit of $ 1.00 on each, she made a total profit of $6.00. How many plates did she purchase?

$$\mathrm{A}\:\mathrm{woman}\:\mathrm{purchased}\:\mathrm{a}\:\mathrm{number}\:\mathrm{of}\:\mathrm{plates} \\ $$$$\mathrm{for\$150}.\mathrm{00}.\:\mathrm{Four}\:\mathrm{of}\:\mathrm{the}\:\mathrm{plates}\:\mathrm{got}\:\mathrm{broken} \\ $$$$\mathrm{while}\:\mathrm{transporting}\:\mathrm{themto}\:\mathrm{her}\:\mathrm{shop}.\:\mathrm{By}\:\mathrm{selling} \\ $$$$\mathrm{the}\:\mathrm{remaining}\:\mathrm{plates}\:\mathrm{at}\:\mathrm{a}\:\mathrm{profit}\:\mathrm{of}\:\$\:\mathrm{1}.\mathrm{00}\:\mathrm{on}\:\mathrm{each}, \\ $$$$\mathrm{she}\:\mathrm{made}\:\mathrm{a}\:\mathrm{total}\:\mathrm{profit}\:\mathrm{of}\:\$\mathrm{6}.\mathrm{00}.\:\mathrm{How}\:\mathrm{many} \\ $$$$\mathrm{plates}\:\mathrm{did}\:\mathrm{she}\:\mathrm{purchase}? \\ $$

Question Number 108914    Answers: 1   Comments: 4

Q108815(19/8/20)(unanswer)by 1x.x Given f(x)=(1/( (√(1+x))))+(1/( (√(1+a))))+((√(ax))/( (√(ax+8)))) x,a∈R;x,a>0.Prove that 1<f(x)<2 Solution:Put x=tan^2 A,a=tan^2 B(A,B∈[0,(π/2)) f(x)=cosA+cosB+((tanAtanB)/( (√(tan^2 Atan^2 B+8)))) =cosA+cosB+((sinAsinB)/( (√(8cos^2 Acos^2 B+sin^2 Asin^2 B)))) Put cosA=z,cosB=y(z,y∈(0,1])we have f=z+y+((√((1−z^2 )(1−y^2 )))/( (√(8z^2 y^2 +(1−z^2 )(1−y^2 ))))) =z+y+((√((1−z^2 )(1−y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 ))))) i)First we prove f(x)>1 ⇔z+y+((√((1−z^2 )(1− y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))>1(1) If z+y≥1 then the inequality(1) is true.Consider z+y<1.Put m=1−(z+y)⇔z+y=1−m(0<m≤1) z^2 +y^2 =(z+y)^2 −2zy=(1−m)^2 −2zy (1)⇔(((1−z^2 )(1−y^2 ))/( 9z^2 y^2 +1−(z^2 +y^2 )))>[1−(z+y)]^2 ⇔1+z^2 y^2 −(z^2 +y^2 )>[9z^2 y^2 +1−(z^2 +y^2 )]m^2 1+z^2 y^2 −[1−2m+m^2 −2zy]>[9z^2 y^2 +1−(1−2m+m^2 −2zy)]m^2 ⇔z^2 y^2 +2zy+2m−m^2 >(9z^2 y^2 +2zy+2m−m^2 )m^2 ⇔m^4 −m^2 (9z^2 y^2 +2zy+2m)+(z^2 y^2 +2zy+2m−m^2 )>0 We look at LHS as a quadratic polynomial with respect to “im^2 ” defined on the interval(0;1) and we denote by P(m).By the theorem above the sign of quadratic poly.P(m)>0⇔ Δ_P =(9z^2 y^2 +2zy+2m)^2 −4(z^2 y^2 +2zy+2m−m^2 )<0 ⇔81z^4 y^4 +4z^2 y^2 +4m^2 +36z^3 y^3 +36mz^2 y^2 +8mzy−4(z^2 y^2 +2zy+2m−m^2 )<0 ⇔81z^4 y^4 +36z^3 y^3 +36mz^2 y^2 +8(m−1)zy+8m^2 −8m<0 ⇔8m^2 +(36z^2 y^2 +8zy−8)m+81z^4 y^4 +36z^3 y^3 −8zy<0(3) We look at LHS (3) like as a quadratic polynomial w.r.t “m” and denote by Q(m) We has Q(0)=81(zy)^4 +36(zy)^3 −8zy ≤81t/64+36t/16−8t=225t/64−8t<0 (due to 0< t=zy≤1/4 ) Q(1)=1+36(zy)^2 +8zy−8+81(zy)^4 +36(zy)^3 −8zy =−7+36(zy)^2 +81(zy)^4 +36(zy)^3 ≤ −7+36/16+81/256+36/64<0 (due to zy≤1/4) By the convert theorem above the sign of the quadratic polynomial we infer Q(m)>0 ∀m∈(0;1)which means P(m) has Δ_P <0 ∀m∈(0;1)⇒the inequality (1) proved ii)Now we prove that f(x)<2 ⇔z+y+((√((1−z^2 )(1−y^2 )))/( (√(9z^2 y^2 +1−(z^2 +y^2 )))))<2(4) ⇔(((1−z^2 )(1−y^2 ))/(9z^2 y^2 +1−(z^2 +y^2 )))<[2−(z+y)]^2 ⇔1+z^2 y^2 −(z^2 +y^2 )<[9z^2 y^2 +1−(z^2 +y^2 )](1+m)^2 (note (1−m=z+y like as above we have −1≤m=1−(z+y)<1 as 0<z+y≤2(∗)) ⇔z^2 y^2 +2zy+2m−m^2 <(9z^2 y^2 +2zy+2m−m^2 )(1+2m+m^2 ) ⇔z^2 y^2 +2zy+2m−m^2 <(9z^2 y^2 +2zy+2m−m^2 )+(9z^2 y^2 +2zy)(2m+m^2 )−m^4 +4m^2 >0 ⇔−m^4 +4m^2 +(9z^2 y^2 +2zy)(2m+m^2 )+8z^2 y^2 >0 ⇔(9m^2 +18m+8)(zy)^2 +2(m^2 +2m)zy−m^4 +4m^2 >0(4) We look at LHS like as a quadratic polynomial w.r.t “zy” and denote by H(t)(set t=zy,0<zy≤(((z+y)/2))≤1) a)The case 9m^2 +18m+8>0 We consider the discriminant Δ_H ′of H(t) Δ_H ′=(m^2 +2m)^2 +(9m^2 +18m+8)(m^4 −4m^2 ) =m^4 +4m^3 +4m^2 +9m^6 +18m^5 −28m^4 −72m^3 −32m^2 =9m^6 +18m^5 −27m^4 −68m^3 −28m^2 =m^2 (9m^4 +18m^3 −27m^2 −68m−28) <0( due to ∣m∣≤1). Therefore,we infer H(t)>0∀t∈(0;1]which means the inequality (4)is proved ,so f(x)<2 b)The case 9m^2 +18m+8 < 0 ⇔−1<m<−2/3 .We have { ((H(0)=−m^4 +4m^2 =m^2 (4−m^2 )>0 )),((H(1)=−m^4 +15m^2 +22m+8=)),(((1+m)(−m^3 +m^2 +14m+8)>0)) :} By the convert theorem above the sign of the quadratic polynomial we infer H(t)>0 ∀t=zy∈(0;1)⇒(4)is proved which means we ger f(2)<2 other way: Similar to the case i)Rewrite H(t) in the form H(m^2 )as the quadratic poly. w.r.t “m^2 ” with the highest efficient k=(−1)we get H(0)>0,H(1)>0 ⇒kH(0)<0,kH(1)<0⇒H(m)>0 ∀m^2 ∈[0,1]⇔m∈[−1,1] From i)and ii)we obtain 1<f(x)<2(q.e.d)

$$ \\ $$$$\mathrm{Q108815}\left(\mathrm{19}/\mathrm{8}/\mathrm{20}\right)\left(\mathrm{unanswer}\right)\mathrm{by}\:\mathrm{1x}.\mathrm{x} \\ $$$$\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{x}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{a}}}+\frac{\sqrt{\mathrm{ax}}}{\:\sqrt{\mathrm{ax}+\mathrm{8}}} \\ $$$$\mathrm{x},\mathrm{a}\in\mathrm{R};\mathrm{x},\mathrm{a}>\mathrm{0}.\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{1}<\mathrm{f}\left(\mathrm{x}\right)<\mathrm{2} \\ $$$$\mathrm{Solution}:\mathrm{Put}\:\mathrm{x}=\mathrm{tan}^{\mathrm{2}} \mathrm{A},\mathrm{a}=\mathrm{tan}^{\mathrm{2}} \mathrm{B}\left(\mathrm{A},\mathrm{B}\in\left[\mathrm{0},\frac{\pi}{\mathrm{2}}\right)\right. \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{cosA}+\mathrm{cosB}+\frac{\mathrm{tanAtanB}}{\:\sqrt{\mathrm{tan}^{\mathrm{2}} \mathrm{Atan}^{\mathrm{2}} \mathrm{B}+\mathrm{8}}} \\ $$$$=\mathrm{cosA}+\mathrm{cosB}+\frac{\mathrm{sinAsinB}}{\:\sqrt{\mathrm{8cos}^{\mathrm{2}} \mathrm{Acos}^{\mathrm{2}} \mathrm{B}+\mathrm{sin}^{\mathrm{2}} \mathrm{Asin}^{\mathrm{2}} \mathrm{B}}} \\ $$$$\mathrm{Put}\:\mathrm{cosA}=\mathrm{z},\mathrm{cosB}=\mathrm{y}\left(\mathrm{z},\mathrm{y}\in\left(\mathrm{0},\mathrm{1}\right]\right)\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{f}=\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{8z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}} \\ $$$$=\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}} \\ $$$$\left.\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{First}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)>\mathrm{1} \\ $$$$\Leftrightarrow\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\:\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}}>\mathrm{1}\left(\mathrm{1}\right) \\ $$$$\mathrm{If}\:\mathrm{z}+\mathrm{y}\geqslant\mathrm{1}\:\mathrm{then}\:\mathrm{the}\:\mathrm{inequality}\left(\mathrm{1}\right)\:\mathrm{is} \\ $$$$\mathrm{true}.\mathrm{Consider}\:\mathrm{z}+\mathrm{y}<\mathrm{1}.\mathrm{Put} \\ $$$$\mathrm{m}=\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)\Leftrightarrow\mathrm{z}+\mathrm{y}=\mathrm{1}−\mathrm{m}\left(\mathrm{0}<\mathrm{m}\leqslant\mathrm{1}\right) \\ $$$$\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\left(\mathrm{z}+\mathrm{y}\right)^{\mathrm{2}} −\mathrm{2zy}=\left(\mathrm{1}−\mathrm{m}\right)^{\mathrm{2}} −\mathrm{2zy} \\ $$$$\left(\mathrm{1}\right)\Leftrightarrow\frac{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\:\:\:\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}>\left[\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)\right]^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)>\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\right]\mathrm{m}^{\mathrm{2}} \\ $$$$\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left[\mathrm{1}−\mathrm{2m}+\mathrm{m}^{\mathrm{2}} −\mathrm{2zy}\right]>\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{1}−\mathrm{2m}+\mathrm{m}^{\mathrm{2}} −\mathrm{2zy}\right)\right]\mathrm{m}^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} >\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)\mathrm{m}^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{m}^{\mathrm{4}} −\mathrm{m}^{\mathrm{2}} \left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}\right)+\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)>\mathrm{0} \\ $$$$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\mathrm{LHS}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{polynomial} \\ $$$$\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:``\mathrm{im}^{\mathrm{2}} ''\:\mathrm{defined}\:\mathrm{on}\:\mathrm{the}\:\mathrm{interval}\left(\mathrm{0};\mathrm{1}\right) \\ $$$$\:\mathrm{and}\:\mathrm{we}\:\mathrm{denote}\:\mathrm{by}\:\mathrm{P}\left(\mathrm{m}\right).\mathrm{By}\:\mathrm{the}\:\mathrm{theorem} \\ $$$$\mathrm{above}\:\mathrm{the}\:\mathrm{sign}\:\mathrm{of}\:\mathrm{quadratic}\:\mathrm{poly}.\mathrm{P}\left(\mathrm{m}\right)>\mathrm{0}\Leftrightarrow \\ $$$$\:\Delta_{\mathrm{P}} =\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)<\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{4z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{4m}^{\mathrm{2}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} +\mathrm{36mz}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8mzy}−\mathrm{4}\left(\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)<\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} +\mathrm{36mz}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8}\left(\mathrm{m}−\mathrm{1}\right)\mathrm{zy}+\mathrm{8m}^{\mathrm{2}} −\mathrm{8m}<\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{8m}^{\mathrm{2}} +\left(\mathrm{36z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{8zy}−\mathrm{8}\right)\mathrm{m}+\mathrm{81z}^{\mathrm{4}} \mathrm{y}^{\mathrm{4}} +\mathrm{36z}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} −\mathrm{8zy}<\mathrm{0}\left(\mathrm{3}\right) \\ $$$$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\mathrm{LHS}\:\left(\mathrm{3}\right)\:\mathrm{like}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic} \\ $$$$\mathrm{polynomial}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:``\mathrm{m}''\:\mathrm{and}\:\mathrm{denote}\:\mathrm{by}\:\mathrm{Q}\left(\mathrm{m}\right) \\ $$$$\mathrm{We}\:\mathrm{has}\:\mathrm{Q}\left(\mathrm{0}\right)=\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} −\mathrm{8zy} \\ $$$$\leqslant\mathrm{81t}/\mathrm{64}+\mathrm{36t}/\mathrm{16}−\mathrm{8t}=\mathrm{225t}/\mathrm{64}−\mathrm{8t}<\mathrm{0} \\ $$$$\left(\mathrm{due}\:\mathrm{to}\:\mathrm{0}<\:\mathrm{t}=\mathrm{zy}\leqslant\mathrm{1}/\mathrm{4}\:\right) \\ $$$$\mathrm{Q}\left(\mathrm{1}\right)=\mathrm{1}+\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{8zy}−\mathrm{8}+\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} −\mathrm{8zy} \\ $$$$=−\mathrm{7}+\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{81}\left(\mathrm{zy}\right)^{\mathrm{4}} +\mathrm{36}\left(\mathrm{zy}\right)^{\mathrm{3}} \leqslant \\ $$$$−\mathrm{7}+\mathrm{36}/\mathrm{16}+\mathrm{81}/\mathrm{256}+\mathrm{36}/\mathrm{64}<\mathrm{0}\:\left(\mathrm{due}\:\mathrm{to}\:\mathrm{zy}\leqslant\mathrm{1}/\mathrm{4}\right) \\ $$$$\mathrm{By}\:\mathrm{the}\:\mathrm{convert}\:\mathrm{theorem}\:\mathrm{above}\:\mathrm{the}\:\mathrm{sign} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{polynomial}\:\mathrm{we}\:\mathrm{infer} \\ $$$$\mathrm{Q}\left(\mathrm{m}\right)>\mathrm{0}\:\forall\mathrm{m}\in\left(\mathrm{0};\mathrm{1}\right)\mathrm{which}\:\mathrm{means}\:\mathrm{P}\left(\mathrm{m}\right) \\ $$$$\mathrm{has}\:\Delta_{\mathrm{P}} <\mathrm{0}\:\forall\mathrm{m}\in\left(\mathrm{0};\mathrm{1}\right)\Rightarrow\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{1}\right)\: \\ $$$$\mathrm{proved} \\ $$$$\left.\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{Now}}\:\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{prove}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)<\mathrm{2} \\ $$$$\Leftrightarrow\mathrm{z}+\mathrm{y}+\frac{\sqrt{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}}{\:\sqrt{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}}<\mathrm{2}\left(\mathrm{4}\right) \\ $$$$\Leftrightarrow\frac{\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\left(\mathrm{1}−\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}<\left[\mathrm{2}−\left(\mathrm{z}+\mathrm{y}\right)\right]^{\mathrm{2}} \\ $$$$\Leftrightarrow\mathrm{1}+\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} −\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)<\left[\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{1}−\left(\mathrm{z}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)\right]\left(\mathrm{1}+\mathrm{m}\right)^{\mathrm{2}} \left(\mathrm{note}\right. \\ $$$$\left(\mathrm{1}−\mathrm{m}=\mathrm{z}+\mathrm{y}\:\mathrm{like}\:\mathrm{as}\:\mathrm{above}\:\mathrm{we}\:\mathrm{have}\right. \\ $$$$\left.−\mathrm{1}\leqslant\mathrm{m}=\mathrm{1}−\left(\mathrm{z}+\mathrm{y}\right)<\mathrm{1}\:\mathrm{as}\:\mathrm{0}<\mathrm{z}+\mathrm{y}\leqslant\mathrm{2}\left(\ast\right)\right) \\ $$$$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} <\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)\left(\mathrm{1}+\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right) \\ $$$$\Leftrightarrow\mathrm{z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} <\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}+\mathrm{2m}−\mathrm{m}^{\mathrm{2}} \right)+\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}\right)\left(\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right)−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} >\mathrm{0} \\ $$$$\Leftrightarrow−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} +\left(\mathrm{9z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} +\mathrm{2zy}\right)\left(\mathrm{2m}+\mathrm{m}^{\mathrm{2}} \right)+\mathrm{8z}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} >\mathrm{0} \\ $$$$\Leftrightarrow\left(\mathrm{9m}^{\mathrm{2}} +\mathrm{18m}+\mathrm{8}\right)\left(\mathrm{zy}\right)^{\mathrm{2}} +\mathrm{2}\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2m}\right)\mathrm{zy}−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} >\mathrm{0}\left(\mathrm{4}\right) \\ $$$$\mathrm{We}\:\mathrm{look}\:\mathrm{at}\:\:\mathrm{LHS}\:\mathrm{like}\:\mathrm{as}\:\mathrm{a}\:\mathrm{quadratic} \\ $$$$\mathrm{polynomial}\:\mathrm{w}.\mathrm{r}.\mathrm{t}\:``\mathrm{zy}''\:\mathrm{and}\:\mathrm{denote}\:\mathrm{by} \\ $$$$\mathrm{H}\left(\mathrm{t}\right)\left(\mathrm{set}\:\mathrm{t}=\mathrm{zy},\mathrm{0}<\mathrm{zy}\leqslant\left(\frac{\mathrm{z}+\mathrm{y}}{\mathrm{2}}\right)\leqslant\mathrm{1}\right) \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{case}}\:\:\mathrm{9}\boldsymbol{\mathrm{m}}^{\mathrm{2}} +\mathrm{18}\boldsymbol{\mathrm{m}}+\mathrm{8}>\mathrm{0}\: \\ $$$$\mathrm{We}\:\mathrm{consider}\:\mathrm{the}\:\mathrm{discriminant}\:\Delta_{\mathrm{H}} '\mathrm{of}\:\mathrm{H}\left(\mathrm{t}\right) \\ $$$$\Delta_{\mathrm{H}} '=\left(\mathrm{m}^{\mathrm{2}} +\mathrm{2m}\right)^{\mathrm{2}} +\left(\mathrm{9m}^{\mathrm{2}} +\mathrm{18m}+\mathrm{8}\right)\left(\mathrm{m}^{\mathrm{4}} −\mathrm{4m}^{\mathrm{2}} \right) \\ $$$$=\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{3}} +\mathrm{4m}^{\mathrm{2}} +\mathrm{9m}^{\mathrm{6}} +\mathrm{18m}^{\mathrm{5}} −\mathrm{28m}^{\mathrm{4}} −\mathrm{72m}^{\mathrm{3}} −\mathrm{32m}^{\mathrm{2}} \\ $$$$=\mathrm{9m}^{\mathrm{6}} +\mathrm{18m}^{\mathrm{5}} −\mathrm{27m}^{\mathrm{4}} −\mathrm{68m}^{\mathrm{3}} −\mathrm{28m}^{\mathrm{2}} \\ $$$$=\mathrm{m}^{\mathrm{2}} \left(\mathrm{9m}^{\mathrm{4}} +\mathrm{18m}^{\mathrm{3}} −\mathrm{27m}^{\mathrm{2}} −\mathrm{68m}−\mathrm{28}\right) \\ $$$$<\mathrm{0}\left(\:\boldsymbol{\mathrm{due}}\:\boldsymbol{\mathrm{to}}\:\mid\boldsymbol{\mathrm{m}}\mid\leqslant\mathrm{1}\right).\:\mathrm{Therefore},\mathrm{we}\: \\ $$$$\mathrm{infer}\:\mathrm{H}\left(\mathrm{t}\right)>\mathrm{0}\forall\mathrm{t}\in\left(\mathrm{0};\mathrm{1}\right]\mathrm{which}\:\mathrm{means} \\ $$$$\mathrm{the}\:\mathrm{inequality}\:\left(\mathrm{4}\right)\mathrm{is}\:\:\mathrm{proved}\:,\mathrm{so}\:\mathrm{f}\left(\mathrm{x}\right)<\mathrm{2} \\ $$$$\left.\boldsymbol{\mathrm{b}}\right)\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{case}}\:\:\mathrm{9}\boldsymbol{\mathrm{m}}^{\mathrm{2}} +\mathrm{18}\boldsymbol{\mathrm{m}}+\mathrm{8}\:<\:\mathrm{0}\: \\ $$$$\:\Leftrightarrow−\mathrm{1}<\boldsymbol{\mathrm{m}}<−\mathrm{2}/\mathrm{3}\:.\mathrm{We}\:\mathrm{have} \\ $$$$\begin{cases}{\mathrm{H}\left(\mathrm{0}\right)=−\mathrm{m}^{\mathrm{4}} +\mathrm{4m}^{\mathrm{2}} =\mathrm{m}^{\mathrm{2}} \left(\mathrm{4}−\mathrm{m}^{\mathrm{2}} \right)>\mathrm{0}\:}\\{\mathrm{H}\left(\mathrm{1}\right)=−\mathrm{m}^{\mathrm{4}} +\mathrm{15m}^{\mathrm{2}} +\mathrm{22m}+\mathrm{8}=}\\{\left(\mathrm{1}+\mathrm{m}\right)\left(−\mathrm{m}^{\mathrm{3}} +\mathrm{m}^{\mathrm{2}} +\mathrm{14m}+\mathrm{8}\right)>\mathrm{0}}\end{cases} \\ $$$$\mathrm{By}\:\mathrm{the}\:\mathrm{convert}\:\mathrm{theorem}\:\mathrm{above}\:\mathrm{the}\:\mathrm{sign} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{polynomial}\:\mathrm{we}\:\mathrm{infer} \\ $$$$\mathrm{H}\left(\mathrm{t}\right)>\mathrm{0}\:\forall\mathrm{t}=\mathrm{zy}\in\left(\mathrm{0};\mathrm{1}\right)\Rightarrow\left(\mathrm{4}\right)\mathrm{is}\:\mathrm{proved} \\ $$$$\mathrm{which}\:\mathrm{means}\:\mathrm{we}\:\mathrm{ger}\:\mathrm{f}\left(\mathrm{2}\right)<\mathrm{2} \\ $$$$\boldsymbol{\mathrm{other}}\:\boldsymbol{\mathrm{way}}: \\ $$$$\left.\mathrm{Similar}\:\mathrm{to}\:\mathrm{the}\:\mathrm{case}\:\mathrm{i}\right)\mathrm{Rewrite}\:\mathrm{H}\left(\mathrm{t}\right)\:\mathrm{in}\: \\ $$$$\mathrm{the}\:\mathrm{form}\:\mathrm{H}\left(\mathrm{m}^{\mathrm{2}} \right)\mathrm{as}\:\mathrm{the}\:\mathrm{quadratic}\:\mathrm{poly}. \\ $$$$\mathrm{w}.\mathrm{r}.\mathrm{t}\:``\mathrm{m}^{\mathrm{2}} ''\:\mathrm{with}\:\mathrm{the}\:\mathrm{highest}\:\mathrm{efficient} \\ $$$$\mathrm{k}=\left(−\mathrm{1}\right)\mathrm{we}\:\mathrm{get}\:\mathrm{H}\left(\mathrm{0}\right)>\mathrm{0},\mathrm{H}\left(\mathrm{1}\right)>\mathrm{0} \\ $$$$\Rightarrow\mathrm{kH}\left(\mathrm{0}\right)<\mathrm{0},\mathrm{kH}\left(\mathrm{1}\right)<\mathrm{0}\Rightarrow\mathrm{H}\left(\mathrm{m}\right)>\mathrm{0} \\ $$$$\forall\mathrm{m}^{\mathrm{2}} \in\left[\mathrm{0},\mathrm{1}\right]\Leftrightarrow\mathrm{m}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$$\left.\boldsymbol{\mathrm{F}}\left.\boldsymbol{\mathrm{rom}}\:\boldsymbol{\mathrm{i}}\right)\boldsymbol{\mathrm{and}}\:\boldsymbol{\mathrm{ii}}\right)\boldsymbol{\mathrm{we}}\:\boldsymbol{\mathrm{obtain}}\:\mathrm{1}<\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)<\mathrm{2}\left(\boldsymbol{\mathrm{q}}.\boldsymbol{\mathrm{e}}.\boldsymbol{\mathrm{d}}\right) \\ $$

Question Number 108913    Answers: 1   Comments: 0

IF F varies directly as A and N, find the constant of proportionality when A=182, F=365 and N=80.

$$\mathcal{IF}\:{F}\:\:{varies}\:{directly}\:{as}\:{A}\:{and}\:{N}, \\ $$$${find}\:\:{the}\:{constant}\:{of} \\ $$$${proportionality}\:{when}\:{A}=\mathrm{182}, \\ $$$${F}=\mathrm{365}\:{and}\:{N}=\mathrm{80}. \\ $$

Question Number 108908    Answers: 0   Comments: 0

Question Number 108907    Answers: 1   Comments: 1

Three Catagories of Posts: Question , Answer & Comment Use Question for only questions. (Don′t use it for solutions & comments.)

$$\mathcal{T}{hree}\:\:\mathcal{C}{atagories}\:{of}\:\mathcal{P}{osts}: \\ $$$${Question}\:,\:\mathcal{A}{nswer}\:\&\:\mathcal{C}{omment} \\ $$$$ \\ $$$$\mathbb{U}\mathrm{se}\:{Question}\:\mathrm{for}\:\boldsymbol{\mathrm{only}}\:\mathrm{questions}. \\ $$$$\left(\mathcal{D}{on}'{t}\:{use}\:{it}\:{for}\:{solutions}\:\&\right. \\ $$$$\left.{comments}.\right) \\ $$

Question Number 108954    Answers: 1   Comments: 5

Evaluate : Ω=∫_0 ^( 1) ∫_0 ^( 1) (1/(2−x^2 − y^2 )) dxdy=??? ★★♣♣★★

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathscr{E}{valuate}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}−{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} }\:{dxdy}=???\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bigstar\bigstar\clubsuit\clubsuit\bigstar\bigstar \\ $$$$ \\ $$

Question Number 108901    Answers: 1   Comments: 0

f(x)=x^2 (1+x)^3 Find f′′(1).

$${f}\left({x}\right)={x}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{3}} \\ $$$$\mathrm{Find}\:{f}''\left(\mathrm{1}\right).\: \\ $$

Question Number 108893    Answers: 6   Comments: 0

(1)∫ (x^4 /(1−x^2 )) dx (2)∫_(−3) ^5 (√(∣x∣^3 )) dx (3) ∫_0 ^(π^2 /4) sin (√x) dx (4) ∫_(−∞) ^∞ e^(−2x^2 −5x−3) dx (5) x^3 y′′′−2x^2 y′′−2xy′+8y=0 (6)(x^4 +y^4 )dx+2x^3 y dy = 0 (7) (2(√(xy))−y)dx−xdy = 0

$$\left(\mathrm{1}\right)\int\:\frac{{x}^{\mathrm{4}} }{\mathrm{1}−{x}^{\mathrm{2}} }\:{dx}\: \\ $$$$\left(\mathrm{2}\right)\underset{−\mathrm{3}} {\overset{\mathrm{5}} {\int}}\sqrt{\mid{x}\mid^{\mathrm{3}} }\:{dx}\: \\ $$$$\left(\mathrm{3}\right)\:\underset{\mathrm{0}} {\overset{\frac{\pi^{\mathrm{2}} }{\mathrm{4}}} {\int}}\:\mathrm{sin}\:\sqrt{{x}}\:{dx}\: \\ $$$$\left(\mathrm{4}\right)\:\underset{−\infty} {\overset{\infty} {\int}}{e}^{−\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{3}} \:{dx}\: \\ $$$$\left(\mathrm{5}\right)\:{x}^{\mathrm{3}} {y}'''−\mathrm{2}{x}^{\mathrm{2}} {y}''−\mathrm{2}{xy}'+\mathrm{8}{y}=\mathrm{0} \\ $$$$\left(\mathrm{6}\right)\left({x}^{\mathrm{4}} +{y}^{\mathrm{4}} \right){dx}+\mathrm{2}{x}^{\mathrm{3}} {y}\:{dy}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{7}\right)\:\left(\mathrm{2}\sqrt{{xy}}−{y}\right){dx}−{xdy}\:=\:\mathrm{0} \\ $$

Question Number 108891    Answers: 1   Comments: 0

((bobHans)/∦) ∫ (((x^2 −2) dx)/((x^4 +5x^2 +4) arc tan (((x^2 +2)/x))))

$$\:\:\:\frac{\boldsymbol{{bob}}\mathbb{H}{ans}}{\nparallel} \\ $$$$\int\:\frac{\left({x}^{\mathrm{2}} −\mathrm{2}\right)\:{dx}}{\left({x}^{\mathrm{4}} +\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}\right)\:\mathrm{arc}\:\mathrm{tan}\:\left(\frac{{x}^{\mathrm{2}} +\mathrm{2}}{{x}}\right)} \\ $$

Question Number 108888    Answers: 3   Comments: 0

((⋮BeMath⋮)/△) Suppose 2x^3 +3x^2 −14x−5= (Px+Q)(x+3)(x+1)+R for all value of x. Find the value of P,Q and R

$$\:\:\:\frac{\vdots\mathcal{B}{e}\mathcal{M}{ath}\vdots}{\bigtriangleup} \\ $$$${Suppose}\:\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{14}{x}−\mathrm{5}=\:\left({Px}+{Q}\right)\left({x}+\mathrm{3}\right)\left({x}+\mathrm{1}\right)+{R}\:{for}\:{all} \\ $$$${value}\:{of}\:{x}.\:{Find}\:{the}\:{value}\:{of}\:{P},{Q}\:{and}\:{R}\: \\ $$

Question Number 108899    Answers: 0   Comments: 1

Question Number 108897    Answers: 0   Comments: 1

Question Number 108871    Answers: 0   Comments: 0

Question Number 108870    Answers: 2   Comments: 1

Question Number 108868    Answers: 2   Comments: 1

Question Number 108854    Answers: 1   Comments: 0

The sixth term of an A.P. is 2, its common difference is greater than one. Find the value of the common difference so that the product of the first, fourth and fifth terms is the greatest.

$$\mathrm{The}\:\mathrm{sixth}\:\mathrm{term}\:\mathrm{of}\:\mathrm{an}\:\mathrm{A}.\mathrm{P}.\:\mathrm{is}\:\mathrm{2},\:\mathrm{its} \\ $$$$\mathrm{common}\:\mathrm{difference}\:\mathrm{is}\:\mathrm{greater}\:\mathrm{than} \\ $$$$\mathrm{one}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{common} \\ $$$$\mathrm{difference}\:\mathrm{so}\:\mathrm{that}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{first},\:\mathrm{fourth}\:\mathrm{and}\:\mathrm{fifth}\:\mathrm{terms}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{greatest}. \\ $$

Question Number 108864    Answers: 2   Comments: 1

  Pg 995      Pg 996      Pg 997      Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com