Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1000

Question Number 118849    Answers: 1   Comments: 2

Question Number 118841    Answers: 1   Comments: 1

Question Number 118839    Answers: 0   Comments: 1

Question Number 118834    Answers: 2   Comments: 0

∫ ((x^4 +1)/(x^5 +4x^3 )) dx

$$\:\:\int\:\frac{{x}^{\mathrm{4}} +\mathrm{1}}{{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{3}} }\:{dx}\: \\ $$

Question Number 118857    Answers: 0   Comments: 0

Question Number 118825    Answers: 2   Comments: 0

I am thinking of a two−digit number .If i write 3 to the left of my number and double this three digit number the result is 27 times my original number. what is my number ?

$${I}\:{am}\:{thinking}\:{of}\:{a}\:{two}−{digit}\:{number} \\ $$$$.{If}\:{i}\:{write}\:\mathrm{3}\:{to}\:{the}\:{left}\:{of}\:{my}\:{number} \\ $$$${and}\:{double}\:{this}\:{three}\:{digit}\:{number}\:{the} \\ $$$${result}\:{is}\:\mathrm{27}\:{times}\:{my}\:{original}\:{number}. \\ $$$${what}\:{is}\:{my}\:{number}\:? \\ $$

Question Number 118822    Answers: 2   Comments: 0

In how many ways can the letters of the word LEVITATE be arranged if the vowels must not be next to each other

$$\:\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the}\:\mathrm{letters}\:\mathrm{of}\: \\ $$$$\:\mathrm{the}\:\mathrm{word}\:{LEVITATE}\:\mathrm{be}\:\mathrm{arranged}\:\mathrm{if} \\ $$$$\:\mathrm{the}\:\mathrm{vowels}\:\mathrm{must}\:\mathrm{not}\:\mathrm{be}\:\mathrm{next}\:\mathrm{to}\:\mathrm{each} \\ $$$$\:\mathrm{other} \\ $$

Question Number 118819    Answers: 3   Comments: 0

∫((x^4 +x^2 +1)/((x^2 +4)^2 (x^2 +1))) dx

$$\int\frac{{x}^{\mathrm{4}} +{x}^{\mathrm{2}} +\mathrm{1}}{\left({x}^{\mathrm{2}} +\mathrm{4}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)}\:{dx}\: \\ $$

Question Number 118813    Answers: 1   Comments: 0

(d^2 y/dx^2 ) −4x (dy/dx) + y(3x^2 −2)= 0

$$\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:−\mathrm{4}{x}\:\frac{{dy}}{{dx}}\:+\:{y}\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}\right)=\:\mathrm{0}\: \\ $$

Question Number 118811    Answers: 1   Comments: 4

Question Number 118810    Answers: 3   Comments: 0

(√(2003)) + (√(2005)) < 2(√(2004)) ???

$$\sqrt{\mathrm{2003}}\:+\:\sqrt{\mathrm{2005}}\:<\:\mathrm{2}\sqrt{\mathrm{2004}}\:\:??? \\ $$

Question Number 118798    Answers: 2   Comments: 0

1)Find (dy/dx) ; if x = at^2 , y = 2at 2)

$$\left.\:\mathrm{1}\right){Find}\:\frac{{dy}}{{dx}}\:\:;\:\:\:{if}\:\:\:{x}\:=\:{at}^{\mathrm{2}} \:,\:\:{y}\:=\:\mathrm{2}{at} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\: \\ $$

Question Number 118793    Answers: 0   Comments: 0

Question Number 118791    Answers: 2   Comments: 0

Question Number 118790    Answers: 0   Comments: 0

Show by recurence that (a+b)^n =Σ_(k=0 ) ^n C_n ^k ×a^k ×b^(n−k)

$$\mathrm{Show}\:\mathrm{by}\:\mathrm{recurence}\:\mathrm{that} \\ $$$$\left(\mathrm{a}+\mathrm{b}\right)^{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}\:} {\overset{\mathrm{n}} {\sum}}\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} ×\mathrm{a}^{\mathrm{k}} ×\mathrm{b}^{\mathrm{n}−\mathrm{k}} \\ $$

Question Number 118781    Answers: 0   Comments: 6

Question Number 118780    Answers: 2   Comments: 0

z and z′ ∈ C . show that: 1. zz′^(−) =z^− ×z′^(−) 2. ((z/(z′)))^(−) =(z^− /(z′^(−) ))

$$\mathrm{z}\:\mathrm{and}\:\mathrm{z}'\:\in\:\mathbb{C}\:. \\ $$$$\mathrm{show}\:\mathrm{that}: \\ $$$$\mathrm{1}.\:\:\:\:\:\:\overline {\mathrm{zz}'}=\overset{−} {\mathrm{z}}×\overline {\mathrm{z}'} \\ $$$$\mathrm{2}.\:\:\:\:\:\:\:\overline {\left(\frac{\mathrm{z}}{\mathrm{z}'}\right)}=\frac{\overset{−} {\mathrm{z}}}{\overline {\mathrm{z}'}} \\ $$$$ \\ $$

Question Number 118777    Answers: 1   Comments: 0

lim_(n→∞) (((n!)/n^n ))^(1/n) =lim_(n→∞) ((((√(2nπ)) n^n )/(n^n ×e^n )))^(1/n) ⇒lim_(n→∞) (1/e)((√(2nπ)))^(1/n) =(1/e)

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}{n}\pi}\:{n}^{{n}} }{{n}^{{n}} ×{e}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{e}}\left(\sqrt{\mathrm{2}{n}\pi}\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{e}} \\ $$

Question Number 207634    Answers: 1   Comments: 0

calculer lim n→+oo f_n (x) f_n (x)=∫_0^ ^(+oo) ((ne^(−x) )/(1+nx))dx /x∈[0+oo[

$${calculer}\:{lim}\:\:{n}\rightarrow+{oo}\:{f}_{{n}} \left({x}\right) \\ $$$${f}_{{n}} \left({x}\right)=\int_{\mathrm{0}^{} } ^{+{oo}} \frac{{ne}^{−{x}} }{\mathrm{1}+{nx}}{dx}\:\:\:/{x}\in\left[\mathrm{0}+{oo}\left[\right.\right. \\ $$

Question Number 118768    Answers: 1   Comments: 0

Question Number 118759    Answers: 0   Comments: 4

The first three terms in the binomial expansion (p−q)^m , in ascending order of q, are denoted by a,b and c respectively. Show that (b^2 /(ac))=((2m)/(m−1))

$$\mathrm{The}\:\mathrm{first}\:\mathrm{three}\:\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{binomial}\:\mathrm{expansion} \\ $$$$\left({p}−{q}\right)^{{m}} \:,\:\mathrm{in}\:\mathrm{ascending}\:\mathrm{order}\:\mathrm{of}\:{q},\:\mathrm{are}\:\mathrm{denoted} \\ $$$$\mathrm{by}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{respectively}. \\ $$$$\mathrm{Show}\:\mathrm{that}\:\frac{{b}^{\mathrm{2}} }{{ac}}=\frac{\mathrm{2}{m}}{{m}−\mathrm{1}} \\ $$

Question Number 118757    Answers: 2   Comments: 1

Question Number 118753    Answers: 3   Comments: 1

∫_2 ^4 x^3 e^x dx

$$\int_{\mathrm{2}} ^{\mathrm{4}} {x}^{\mathrm{3}} {e}^{{x}} {dx} \\ $$

Question Number 118752    Answers: 0   Comments: 0

∫ ((2 dx)/(x^2 (((3+x^4 )^5 ))^(1/(4 )) )) dx

$$\:\:\int\:\frac{\mathrm{2}\:{dx}}{{x}^{\mathrm{2}} \:\sqrt[{\mathrm{4}\:}]{\left(\mathrm{3}+{x}^{\mathrm{4}} \right)^{\mathrm{5}} }}\:{dx}\: \\ $$

Question Number 118747    Answers: 4   Comments: 0

find the distance of point (2,1,−2) to plane passing through points (−1,2,−3); (0,−4,−2) and (1,3,4).

$${find}\:{the}\:{distance}\:{of}\:{point}\:\left(\mathrm{2},\mathrm{1},−\mathrm{2}\right)\:{to}\:{plane} \\ $$$${passing}\:{through}\:{points}\:\left(−\mathrm{1},\mathrm{2},−\mathrm{3}\right); \\ $$$$\left(\mathrm{0},−\mathrm{4},−\mathrm{2}\right)\:{and}\:\left(\mathrm{1},\mathrm{3},\mathrm{4}\right). \\ $$

Question Number 118740    Answers: 1   Comments: 1

f(x+2)+f(x−1)=2x^2 +14 f(x)=?

$${f}\left({x}+\mathrm{2}\right)+{f}\left({x}−\mathrm{1}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{14} \\ $$$${f}\left({x}\right)=? \\ $$

  Pg 995      Pg 996      Pg 997      Pg 998      Pg 999      Pg 1000      Pg 1001      Pg 1002      Pg 1003      Pg 1004   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com