Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 10
Question Number 220843 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\alpha\:\in\:\mathbb{R} \\ $$$$\:\:\:\:\:\mathrm{lim}_{{x}\rightarrow\mathrm{1}} \:\frac{\left(\mathrm{1}\:−\:{x}\right)^{\alpha} }{\:^{\mathrm{3}} \sqrt{\mathrm{1}\:−\:{x}^{\mathrm{4}} }}\:\:\:\:\:\:\:\:\in\left(\mathrm{0},\infty\right) \\ $$$$ \\ $$
Question Number 220842 Answers: 0 Comments: 2
$$ \\ $$$$\:\:\:\:\:\:\mathrm{J}=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{t}} {u}_{\pi} \left({t}\right){cos}\left({t}\right){dt}=? \\ $$$$ \\ $$$$\:{note}:\:\:{u}_{{c}} \left({t}\right)=\:\begin{cases}{\:\mathrm{0}\:\:\:\:\:\:\:\:{t}<{c}}\\{\:\mathrm{1}\:\:\:\:\:\:\:\:\:{t}>{c}\:\:}\end{cases}\:\:;\:\:\:\:{c}\geqslant\mathrm{0} \\ $$
Question Number 220830 Answers: 0 Comments: 2
Question Number 220832 Answers: 3 Comments: 0
Question Number 220831 Answers: 1 Comments: 0
Question Number 220825 Answers: 1 Comments: 0
Question Number 220820 Answers: 1 Comments: 1
Question Number 220811 Answers: 0 Comments: 0
Question Number 220810 Answers: 1 Comments: 3
Question Number 220800 Answers: 0 Comments: 0
$$\mathrm{To}\:\mathrm{Tinkutara} \\ $$$$\begin{bmatrix}{\mathrm{a}}\\{\mathrm{b}}\end{bmatrix},\begin{vmatrix}{\mathrm{a}}\\{\mathrm{b}}\end{vmatrix},\begin{pmatrix}{\mathrm{a}}\\{\mathrm{b}}\end{pmatrix}\:,\begin{cases}{\mathrm{a}}\\{\mathrm{b}}\end{cases}\:,\:\:\left.\begin{matrix}{\mathrm{a}}\\{\mathrm{b}}\end{matrix}\right\}\:,\begin{array}{|c|c|}{\mathrm{abcdefg}}\\{\mathrm{pqrstvw}}\\\hline\end{array}\:\mathrm{is}\:\mathrm{work}\:\mathrm{well} \\ $$$$\mathrm{but}\:\mathrm{invisible}\:\mathrm{line}\:\mathrm{matrix}\left(?\right)\:\mathrm{dosen}'\mathrm{t}\:\mathrm{work} \\ $$$$\mathrm{pls}\:\mathrm{Fix}\:\mathrm{bug} \\ $$
Question Number 220791 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{{x}^{\mathrm{2}} }{\boldsymbol{\mathrm{sin}}\:{x}\:+\:\mathrm{1}}\:{dx} \\ $$$$ \\ $$
Question Number 220790 Answers: 1 Comments: 0
$$\mathrm{Complex}\:\mathrm{integral} \\ $$$$\oint_{\:\mathrm{C}} \:\frac{\mathrm{d}{z}}{{z}^{\mathrm{3}} +\mathrm{1}}=??\:,\:{C};{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{4} \\ $$$$\oint_{\:{C}} \:\frac{\mathrm{1}}{{z}}{e}^{{z}} \:\mathrm{d}{z},\:{C};\begin{cases}{{y}=\mathrm{1}\:,\:−\mathrm{1}\leq{x}\leq\mathrm{1}}\\{{y}=−\mathrm{1}\:,\:−\mathrm{1}\leq{x}\leq\mathrm{1}}\\{{x}=\mathrm{1}\:,\:−\mathrm{1}\leq{y}\leq\mathrm{1}}\\{{x}=−\mathrm{1}\:,\:−\mathrm{1}\leq{y}\leq\mathrm{1}}\end{cases}\: \\ $$
Question Number 220770 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{\:{sin}\left({x}\right)}{\:\sqrt{\mathrm{1}\:+\sqrt{{sin}\left(\mathrm{2}{x}\right)}}}{dx}\: \\ $$
Question Number 220769 Answers: 2 Comments: 0
Question Number 220764 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\boldsymbol{\mathrm{L}}=\:\boldsymbol{\mathrm{lim}}\underset{\:\boldsymbol{{n}}\rightarrow\infty} {\:}\left(\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\:\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}^{\mathrm{2}} +\boldsymbol{{k}}^{\mathrm{2}} }\right).\left(\underset{\:\mathrm{0}} {\int}^{\:\mathrm{1}} \boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{2}} } \boldsymbol{{dx}}\overset{−\mathrm{1}} {\right)}.\left(\underset{\boldsymbol{{m}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\boldsymbol{{m}}} }{\left(\mathrm{2}\boldsymbol{{m}}+\mathrm{1}\right)\mathrm{3}^{\boldsymbol{{m}}} }\right)\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 220755 Answers: 0 Comments: 0
$$ \\ $$$$\mathrm{Hmm}....\mathrm{i}\:\mathrm{need}\:\mathrm{a}\:\mathrm{help}... \\ $$$$\mathrm{generalize}\: \\ $$$$\mathcal{L}_{{z}} ^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{{z}^{{n}} +\mathrm{1}}\right\}=\:\oint_{\:{C}} \:\:\frac{{e}^{{zt}} }{{z}^{{n}} +\mathrm{1}}\:\mathrm{d}{z} \\ $$
Question Number 220745 Answers: 3 Comments: 0
Question Number 220744 Answers: 1 Comments: 0
Question Number 220743 Answers: 1 Comments: 0
Question Number 220741 Answers: 1 Comments: 0
Question Number 220740 Answers: 1 Comments: 0
Question Number 220739 Answers: 1 Comments: 0
Question Number 220738 Answers: 1 Comments: 0
Question Number 220737 Answers: 2 Comments: 0
Question Number 220730 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{\:\sqrt{{x}\left(\mathrm{1}\:−\:{x}\right)\left(\mathrm{1}\:+\:{kx}\right)}}\:{dx}\:,\:\left(−\mathrm{1}\:<\:{k}\:<\:\mathrm{1}\right)\:\:\: \\ $$$$ \\ $$
Question Number 220726 Answers: 0 Comments: 4
Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10 Pg 11 Pg 12 Pg 13 Pg 14
Terms of Service
Privacy Policy
Contact: info@tinkutara.com