Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1
Question Number 226003 Answers: 0 Comments: 1
$${If}\:\:{r}^{\mathrm{2}} +{r}\left(\sqrt{\mathrm{3}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\mathrm{sin}\:\theta=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${find}\:{A}=\int_{\pi/\mathrm{6}} ^{\:\pi/\mathrm{2}} \left(\frac{{r}^{\mathrm{2}} }{\mathrm{2}}\right){d}\theta \\ $$$$\: \\ $$
Question Number 225994 Answers: 0 Comments: 0
Question Number 225993 Answers: 0 Comments: 0
Question Number 225980 Answers: 0 Comments: 0
Question Number 225970 Answers: 0 Comments: 1
$$\mathrm{2}^{\mathrm{100}!} \:?\:\mathrm{2}^{\mathrm{100}} !\left[=,<{or}\:>\right] \\ $$
Question Number 225954 Answers: 2 Comments: 0
$$\sqrt{{x}−\frac{\mathrm{1}}{{x}}}+\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}}}={x} \\ $$$$ \\ $$
Question Number 225955 Answers: 0 Comments: 7
$${can}\:{we}\:{find}\:{the}\:{perimeter} \\ $$$${of}\:{an}\:{ellipse}? \\ $$
Question Number 225941 Answers: 2 Comments: 1
Question Number 225934 Answers: 1 Comments: 0
$$\:\: \begin{cases}{\lceil\:\frac{\mathrm{8}−\mathrm{2}{x}}{\mathrm{3}}\:\rceil\:;\:{x}\geqslant\:\mathrm{0}}\\{\lfloor\:\frac{\mathrm{3}{x}−\mathrm{1}}{\mathrm{4}}\:\rfloor\:;\:{x}<\mathrm{0}}\end{cases}. \\ $$$$\left.\:\: − −\mathrm{1}\right)+\: \\ $$$$ \\ $$
Question Number 225932 Answers: 1 Comments: 0
$$\:{If},\:\frac{{by}+{cz}}{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} }=\frac{{cz}+{ax}}{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} }=\frac{{ax}+{by}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$$\:{then}\:{prove}\:{that},\:\frac{{x}}{{a}}=\frac{{y}}{{b}}=\frac{{z}}{{c}} \\ $$
Question Number 225939 Answers: 2 Comments: 0
Question Number 225938 Answers: 6 Comments: 0
Question Number 225904 Answers: 1 Comments: 1
Question Number 225892 Answers: 2 Comments: 0
Question Number 225885 Answers: 3 Comments: 2
Question Number 225856 Answers: 2 Comments: 12
Question Number 225866 Answers: 1 Comments: 0
$${Question}\:\mathrm{222520} \\ $$
Question Number 225861 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\frac{{ln}^{\mathrm{12}} \left(\mathrm{1}−{x}\right)}{\:\sqrt{\frac{{ln}^{\mathrm{12}} \left(\mathrm{1}−{x}\right)}{\:\sqrt{\frac{{ln}^{\mathrm{12}} \left(\mathrm{1}−{x}\right)}{\:\sqrt{\frac{{ln}^{\mathrm{12}} \left(\mathrm{1}−{x}\right)}{...}}}}}}}}{dx}=? \\ $$
Question Number 225840 Answers: 1 Comments: 1
Question Number 225837 Answers: 3 Comments: 0
$${Show}\:{that},\:{log}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}\sqrt{\mathrm{7}....\alpha}}}}\:=\mathrm{1} \\ $$
Question Number 225832 Answers: 2 Comments: 3
Question Number 225820 Answers: 1 Comments: 1
Question Number 225814 Answers: 1 Comments: 0
$$\int\mid{x}\mid{dx} \\ $$
Question Number 225810 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\mathrm{triangle}: \\ $$$$\frac{\mathrm{4R}}{\mathrm{r}}\:\geqslant\:\frac{\mathrm{w}_{\boldsymbol{\mathrm{a}}} \:\mathrm{w}_{\boldsymbol{\mathrm{b}}} \:\mathrm{w}_{\boldsymbol{\mathrm{c}}} }{\mathrm{h}_{\boldsymbol{\mathrm{a}}} \:\mathrm{h}_{\boldsymbol{\mathrm{b}}} \:\mathrm{h}_{\boldsymbol{\mathrm{c}}} }\:\centerdot\:\left(\frac{\mathrm{1}}{\mathrm{a}}\:+\:\frac{\mathrm{1}}{\mathrm{b}}\right)\centerdot\left(\sqrt{\mathrm{a}}\:+\:\sqrt{\mathrm{b}}\right)^{\mathrm{2}} \\ $$
Question Number 225776 Answers: 1 Comments: 3
Question Number 225788 Answers: 1 Comments: 25
$$\int_{\:\sqrt{\mathrm{2}}−\mathrm{1}} ^{\:{y}} \sqrt{\left(\mathrm{2}\sqrt{\mathrm{2}}\right){y}−\mathrm{1}}{dy} \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com