Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1
Question Number 226850 Answers: 0 Comments: 0
Question Number 226830 Answers: 0 Comments: 0
Question Number 226829 Answers: 0 Comments: 0
Question Number 226828 Answers: 0 Comments: 0
$$\frac{{d}^{\pi} }{{dx}^{\pi} }\left({x}^{\pi} \right)=? \\ $$
Question Number 226821 Answers: 1 Comments: 0
$${Differentiate}\:\: \\ $$$$\mathrm{20sin}\:\left({x}+\mathrm{3}\right)\mathrm{cos}\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$
Question Number 226820 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{Differentiate}\:\:\:\:{x}^{{x}^{{x}} } \\ $$$$ \\ $$
Question Number 226819 Answers: 1 Comments: 0
$${Evaluate} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$
Question Number 226818 Answers: 1 Comments: 0
$${Evaluate} \\ $$$$\int\frac{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}{x}}{dx} \\ $$
Question Number 226815 Answers: 1 Comments: 0
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{cos}\:\frac{{x}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{x}}{\mathrm{2}^{\mathrm{2}} }\:...\:\mathrm{cos}\:\frac{{x}}{\mathrm{2}^{{n}} }\right)\right)\:=\:? \\ $$
Question Number 226812 Answers: 1 Comments: 1
$${if}\:\mathrm{28}{x}+\mathrm{30}{y}+\mathrm{31}{z}=\mathrm{360}\:{with}\:{x},\:{y},\:{z} \\ $$$${being}\:{positive}\:{integers},\:{find} \\ $$$${x}+{y}+{z}=? \\ $$
Question Number 226809 Answers: 0 Comments: 0
$$\phi_{{E}} =\oint_{{S}} \frac{{q}}{\mathrm{4}\pi\epsilon}\:{d}\omega \\ $$
Question Number 226799 Answers: 2 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{\mathrm{1}+{x}}\:\mathrm{d}{x}\:=\:? \\ $$
Question Number 226798 Answers: 1 Comments: 0
$${let}\:{gcd}\left({m},{n}\right)=\mathrm{1}.\:{Determine}\:{gcd}\left(\mathrm{5}^{{m}} +\mathrm{7}^{{m}} ,\mathrm{5}^{{n}} +\mathrm{7}^{{n}} \right) \\ $$
Question Number 226796 Answers: 1 Comments: 0
Question Number 226785 Answers: 0 Comments: 13
Question Number 226780 Answers: 1 Comments: 0
$${By}\:{using}\:{concept}\:{of}\:{complex} \\ $$$${number} \\ $$$${show}\:{that} \\ $$$$\mathrm{tan}\:\mathrm{5}\theta=\frac{\mathrm{tan}\:^{\mathrm{5}} \theta−\mathrm{10tan}\:^{\mathrm{3}} \theta+\mathrm{5tan}\:\theta}{\mathrm{5tan}\:^{\mathrm{4}} \theta−\mathrm{10tan}\:^{\mathrm{2}} \theta+\mathrm{1}} \\ $$
Question Number 226779 Answers: 1 Comments: 0
$${By}\:{using}\:{De}\:{Moivres}\:{theorm} \\ $$$${simplify} \\ $$$$\left({a}\right)\frac{\left(\mathrm{cos}\:\frac{\pi}{\mathrm{2}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\right)\left(\mathrm{cos}\:\frac{\pi}{\mathrm{3}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\right)}{\mathrm{cos}\:\frac{\pi}{\mathrm{3}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}} \\ $$$$\left({b}\right)\frac{\mathrm{cos}\:\frac{\pi}{\mathrm{8}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{8}}}{\mathrm{cos}\:\frac{\pi}{\mathrm{6}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{6}}} \\ $$
Question Number 226778 Answers: 0 Comments: 0
$${Solve}\:{the}\:{following}\:{D}.{E} \\ $$$$\left({a}\right)\:\frac{{dy}}{{dx}}+\mathrm{2}{y}={xy}^{\mathrm{2}} \\ $$$$\left({b}\right)\:\frac{{dy}}{{dx}}+\mathrm{3}\frac{{y}}{{x}}=\mathrm{2}{x}^{\mathrm{4}} {y}^{\mathrm{4}} \\ $$
Question Number 226777 Answers: 4 Comments: 0
$${Show}\:{that} \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}=\frac{\mathrm{4}−\pi}{\mathrm{4}} \\ $$$${Hence}\:{by}\:{using}\:{Simpson}^{'} {s} \\ $$$${rule}\:{find}\:{the}\:{value}\:\:{of}\:\pi\:{with}\: \\ $$$${eleven}\:{ordinates}. \\ $$$${correct}\:{to}\:\mathrm{4}\:{decimal}\:{places} \\ $$
Question Number 226776 Answers: 4 Comments: 0
$${Approximate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {xe}^{{x}^{\mathrm{2}} } {dx}\:{with}\:\mathrm{6}\:{ordinates}. \\ $$$${Use}\:{both}\:{rules}\:{Simpsons}\:{and} \\ $$$${Trapozoidal}\:{rules},{hence}\:{evaluate}\:{and} \\ $$$${calculate}\:{the}\:{percentage}\:{error} \\ $$$${commetted}\:{for}\:{each}\:{case}.{Give}\:{comments} \\ $$$$ \\ $$
Question Number 226775 Answers: 0 Comments: 0
$${Prove}\:{that}\:\left({a}−{b}\right)\left({a}−{c}\right)\left({a}−{d}\right)\left({b}−{c}\right)\left({b}−{d}\right)\left({c}−{d}\right)\:{divisible}\:{by}\:\mathrm{12} \\ $$
Question Number 226771 Answers: 2 Comments: 0
Question Number 226770 Answers: 2 Comments: 0
Question Number 226766 Answers: 1 Comments: 0
Question Number 226755 Answers: 2 Comments: 0
Question Number 226745 Answers: 1 Comments: 2
$${if}\:\frac{{x}}{{lm}−{n}^{\mathrm{2}} }=\frac{{y}}{{mn}−{l}^{\mathrm{2}} }=\frac{{z}}{{nl}−{m}^{\mathrm{2}} } \\ $$$${then}\:{show}\:{lx}+{my}+{nz}=\mathrm{0} \\ $$$$ \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com