Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 226962    Answers: 0   Comments: 0

Question Number 226953    Answers: 0   Comments: 0

If I_n =∫(x^2 +a^2 )^n dx Show that I_n =(1/(2n+1))x(x^2 +a^2 )^n +2na^2 I_(n−1)

$${If}\:{I}_{{n}} =\int\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{{n}} {dx}\: \\ $$$${Show}\:{that} \\ $$$${I}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{x}\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{{n}} +\mathrm{2}{na}^{\mathrm{2}} {I}_{{n}−\mathrm{1}} \: \\ $$

Question Number 226952    Answers: 0   Comments: 0

Question Number 226958    Answers: 2   Comments: 0

3^x =x^9 x^2 = ..?

$$\:\:\:\mathrm{3}^{\mathrm{x}} =\mathrm{x}^{\mathrm{9}} \: \\ $$$$\:\:\:\:\mathrm{x}^{\mathrm{2}} =\:..? \\ $$

Question Number 226914    Answers: 2   Comments: 0

Question Number 226919    Answers: 4   Comments: 0

Question Number 226912    Answers: 1   Comments: 0

Question Number 226910    Answers: 2   Comments: 0

Question Number 226908    Answers: 1   Comments: 1

Question Number 226907    Answers: 0   Comments: 0

two small balls are hung from a point (same mass, same charge and rope length are same) the two strings make an angle 30^0 when immersed in a liquid of ρ=0.8g/cc the angle remains same.ρ_(ball) =1.6g/cc what is the value of κ(dielectric const.)of the liquid

$${two}\:{small}\:{balls}\:{are}\:{hung}\:{from}\:{a}\:{point} \\ $$$$\left({same}\:{mass},\:{same}\:{charge}\:{and}\:{rope}\:{length}\:{are}\:{same}\right) \\ $$$${the}\:{two}\:{strings}\:{make}\:{an}\:{angle}\:\mathrm{30}^{\mathrm{0}} \\ $$$${when}\:{immersed}\:{in}\:{a}\:{liquid}\:{of}\:\rho=\mathrm{0}.\mathrm{8}{g}/{cc} \\ $$$${the}\:{angle}\:{remains}\:{same}.\rho_{{ball}} =\mathrm{1}.\mathrm{6}{g}/{cc} \\ $$$${what}\:{is}\:{the}\:{value}\:{of}\:\kappa\left({dielectric}\:{const}.\right){of} \\ $$$${the}\:{liquid} \\ $$

Question Number 226898    Answers: 0   Comments: 0

Reduce to canonical form: sin^2 (x)(∂^2 u/∂x^2 )+sin^2 (2x)(∂^2 u/(∂x∂y))+cos^2 (x)(∂^2 u/∂y^2 )=0

$$\mathrm{Reduce}\:\mathrm{to}\:\mathrm{canonical}\:\mathrm{form}: \\ $$$$\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{x}^{\mathrm{2}} }+\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{x}\partial\mathrm{y}}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)\frac{\partial^{\mathrm{2}} \mathrm{u}}{\partial\mathrm{y}^{\mathrm{2}} }=\mathrm{0} \\ $$

Question Number 226882    Answers: 1   Comments: 0

Question Number 226880    Answers: 1   Comments: 0

Question Number 226879    Answers: 2   Comments: 0

Question Number 226878    Answers: 1   Comments: 0

Question Number 226877    Answers: 0   Comments: 0

Question Number 226901    Answers: 2   Comments: 1

if x+y=2 with x, y >0, find the minimum of x+(√(x^2 +3y^2 )).

$${if}\:{x}+{y}=\mathrm{2}\:{with}\:{x},\:{y}\:>\mathrm{0},\:{find}\:{the} \\ $$$${minimum}\:{of}\:{x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} }. \\ $$

Question Number 226855    Answers: 2   Comments: 0

Question Number 226850    Answers: 4   Comments: 0

Question Number 226961    Answers: 1   Comments: 0

σ = ∫_0 ^( ∞) xe^(−x) J_2 (x)dx=?

$$\:\:\: \\ $$$$\:\:\:\:\:\sigma\:=\:\int_{\mathrm{0}} ^{\:\infty} {xe}^{−{x}} \:{J}_{\mathrm{2}} \left({x}\right){dx}=? \\ $$$$\:\:\:\: \\ $$

Question Number 226830    Answers: 1   Comments: 0

Question Number 226829    Answers: 3   Comments: 0

Question Number 226828    Answers: 0   Comments: 0

(d^π /dx^π )(x^π )=?

$$\frac{{d}^{\pi} }{{dx}^{\pi} }\left({x}^{\pi} \right)=? \\ $$

Question Number 226821    Answers: 1   Comments: 0

Differentiate 20sin (x+3)cos (x^2 /2)

$${Differentiate}\:\: \\ $$$$\mathrm{20sin}\:\left({x}+\mathrm{3}\right)\mathrm{cos}\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}} \\ $$

Question Number 226820    Answers: 1   Comments: 0

Differentiate x^x^x

$$ \\ $$$$\:\:\:\:\:{Differentiate}\:\:\:\:{x}^{{x}^{{x}} } \\ $$$$ \\ $$

Question Number 226819    Answers: 1   Comments: 0

Evaluate ∫_0 ^∞ (dx/(1+x^2 ))

$${Evaluate} \\ $$$$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} } \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com