∫_0 ^(+∞) ((sin^2 (x))/(sin^2 (x)+(xcos (x)+sin (x))^2 ))d(x)
(4/(2x−1)) + ((27)/(3x−1)) + ((125)/(5x−1)) = ((144)/(4x−1)) Find: x = ?
Q207657
(1/1) (((20)),(( 0)) ) +(1/2) (((20)),(( 1)) ) +(1/3) (((20)),(( 2)) ) +...+(1/(21)) (((20)),((20)) ) =?
If p+q+r = 0 and A=(((p^2 +q^2 +r^2 )^2 )/((pq)^2 +(qr)^2 +(rp)^2 )) B= ((q^2 −pr)/(p^2 +q^2 +r^2 )) . Find A^2 −4B
Given x_1 +x_3 +...+x_(2023) = 25−(x_2 +x_4 +...+x_(2022) ) x_1 ^(2 ) + x_3 ^2 +...+x_(2023) ^2 = 125−(x_2 ^2 +x_4 ^2 +...+x_(2022) ^2 ) −2≤x_i ≤1 , i=1,2,3,...,2023 x_i integer number Find minimum value of x_1 ^3 +x_3 ^3 +...+x_(2023) ^3
P=1+(1/3)+(1/5)+(1/7)+...+(1/(2023)) Q= (1/(1×2023))+(1/(3×2021))+(1/(5×2019))+...+(1/(2023×1)) (P/Q)=?
∫_0 ^1 log(1+x^3 )dx = ?and ∫_0 ^1 log (1+x^4 )dx = ? and if possible then find the value of p p = ∫_0 ^1 log(1+x^n )dx = ? n∈N
f_n (x)=(n/(1+x^2 ))sin((x/n)) /x∈[0,1] , n≥1 calculer lim n→∞∫_0 ^1 f_n (x)dx
Find: 4 cos^2 40 − (1/(cos 20)) = ?
{ ((u_(n+1) =((au_n +b)/(cu_n +d)))),((u_0 =k)) :} find u_n in terms of n.
we have 100 money if we want to buy 100 Donkys Horses and Camels mixed while 20 Donkys cost 1 money, 1 Horse costs 1 money and 1 Camel costs 5 money. find total number of Donkys, Horses, and Camels.
((xcosθ)/a) + ((ysinθ)/b) = 1 xsinθ − ycosθ = (√(a^2 sin^2 θ + b^2 cos^2 θ)) Eliminate θ.
x^( lg x) < 10^4 The number of roots?
(√2) sinx + cosx ≥ 1