each J_ν (z),Y_ν (z) are linear independent....??
W_(Ronskian) {J_ν ^ (z),Y_ν (z)}= determinant (((J_ν (z)),( Y_ν (z))),((J_ν ′(z)),(Y_ν ′(z))))
=J_ν ^((1)) (z)Y_ν (z)−J_ν (z)Y_ν ^((1)) (z)
J_ν ^((1)) (z)Y_ν (z)=J_(ν−1) (z)Y_ν (z)−(ν/z)J_ν (z)Y_ν (z)
J_ν (z)Y_ν ^((1)) (z)=Y_(ν−1) (z)J_ν (z)−(ν/z)J_ν (z)Y_ν (z)
J_(ν−1) (z)Y_ν (z)−J_ν (z)Y_(ν−1) (z)....
.....damn.....
Result is (2/(πz)) ......
|