Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 227222    Answers: 0   Comments: 0

Solve x(dy/dx)+y=x^3 6/1/2026

$$\:\:\:\:{Solve} \\ $$$$\:\:\:\:\:\:\:{x}\frac{{dy}}{{dx}}+{y}={x}^{\mathrm{3}} \\ $$$$\:\:\:\:\:\:\mathrm{6}/\mathrm{1}/\mathrm{2026} \\ $$$$ \\ $$

Question Number 227221    Answers: 0   Comments: 0

Solve (x^2 +xy)(dy/dx)=xy−y^2 6/1/2026

$${Solve}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\left({x}^{\mathrm{2}} +{xy}\right)\frac{{dy}}{{dx}}={xy}−{y}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{6}/\mathrm{1}/\mathrm{2026} \\ $$

Question Number 227220    Answers: 0   Comments: 0

Solve (dy/dx)=((x^2 +y^2 )/(xy)) 6/1/2026

$${Solve}\: \\ $$$$\:\:\:\:\:\:\:\frac{{dy}}{{dx}}=\frac{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{{xy}} \\ $$$$\:\:\:\:\mathrm{6}/\mathrm{1}/\mathrm{2026} \\ $$

Question Number 227219    Answers: 0   Comments: 0

Solve (dy/dx)=((y^2 +xy^2 )/(x^2 y−x^2 )) 6/1/2026

$${Solve}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{dy}}{{dx}}=\frac{{y}^{\mathrm{2}} +{xy}^{\mathrm{2}} }{{x}^{\mathrm{2}} {y}−{x}^{\mathrm{2}} } \\ $$$$\:\:\:\:\mathrm{6}/\mathrm{1}/\mathrm{2026} \\ $$$$ \\ $$

Question Number 227200    Answers: 1   Comments: 2

Question Number 227198    Answers: 1   Comments: 1

Question Number 227194    Answers: 0   Comments: 2

umm.... hi

$${umm}....\:{hi} \\ $$

Question Number 227192    Answers: 1   Comments: 0

x^(log 2x) = 5 ⇒x= ?

$$\:\:\:\:{x}^{\mathrm{log}\:\mathrm{2}{x}} \:=\:\mathrm{5}\:\Rightarrow{x}=\:? \\ $$

Question Number 227184    Answers: 3   Comments: 0

Question Number 227174    Answers: 1   Comments: 0

Solve the equation (x−2)(dy/dx)−y=(x−2)^3 given y=10 when x=4. 4/1/2026

$${Solve}\:{the}\:{equation} \\ $$$$\left(\boldsymbol{{x}}−\mathrm{2}\right)\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}−\boldsymbol{{y}}=\left(\boldsymbol{{x}}−\mathrm{2}\right)^{\mathrm{3}} \\ $$$$\boldsymbol{{given}}\:\boldsymbol{{y}}=\mathrm{10}\:\:\boldsymbol{{when}}\:\boldsymbol{{x}}=\mathrm{4}. \\ $$$$\mathrm{4}/\mathrm{1}/\mathrm{2026} \\ $$

Question Number 227173    Answers: 1   Comments: 0

If y−2x(dy/dx)=x(x+1)y^3 Prove that 4/1/2026 y^2 =((6x)/(2x^3 +3x^2 +A))

$$\boldsymbol{{If}}\:\boldsymbol{{y}}−\mathrm{2}\boldsymbol{{x}}\frac{\boldsymbol{{dy}}}{\boldsymbol{{dx}}}=\boldsymbol{{x}}\left(\boldsymbol{{x}}+\mathrm{1}\right)\boldsymbol{{y}}^{\mathrm{3}} \\ $$$${Prove}\:{that}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}/\mathrm{1}/\mathrm{2026} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{y}^{\mathrm{2}} =\frac{\mathrm{6}{x}}{\mathrm{2}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +{A}} \\ $$

Question Number 227168    Answers: 0   Comments: 4

tinku tarra sir: can you please check following issue: this is a table with frame: determinant ((1,(10)),(2,(20))) this is a table without frame: determinant ((1,(10)),(2,(20))) but when this post is uploaded, the second table and all things thereafter vanish.

$${tinku}\:{tarra}\:{sir}: \\ $$$${can}\:{you}\:{please}\:{check}\:{following}\:{issue}: \\ $$$${this}\:{is}\:{a}\:{table}\:{with}\:{frame}: \\ $$$$\begin{array}{|c|c|}{\mathrm{1}}&\hline{\mathrm{10}}\\{\mathrm{2}}&\hline{\mathrm{20}}\\\hline\end{array} \\ $$$${this}\:{is}\:{a}\:{table}\:{without}\:{frame}: \\ $$$$\begin{matrix}{\mathrm{1}}&{\mathrm{10}}\\{\mathrm{2}}&{\mathrm{20}}\end{matrix} \\ $$$${but}\:{when}\:{this}\:{post}\:{is}\:{uploaded},\:{the} \\ $$$${second}\:{table}\:{and}\:{all}\:{things}\: \\ $$$${thereafter}\:{vanish}. \\ $$

Question Number 227162    Answers: 1   Comments: 0

How can I recall an older question? To be precise, number 175409. I have a solution.

$${How}\:{can}\:{I}\:{recall}\:{an}\:{older}\:{question}? \\ $$$${To}\:{be}\:{precise},\:{number}\:\mathrm{175409}.\:{I}\:{have} \\ $$$${a}\:{solution}. \\ $$

Question Number 227157    Answers: 2   Comments: 0

if x=4 the equation “f(x)=x^2 ” what′s the graph for this just curious

$$\mathrm{if}\:{x}=\mathrm{4}\:\mathrm{the}\:\mathrm{equation}\:``{f}\left({x}\right)={x}^{\mathrm{2}} ''\:\mathrm{what}'\mathrm{s} \\ $$$$\mathrm{the}\:\mathrm{graph}\:\mathrm{for}\:\mathrm{this}\:\mathrm{just}\:\mathrm{curious} \\ $$

Question Number 227155    Answers: 1   Comments: 0

Question Number 227154    Answers: 3   Comments: 0

(202519)^(2025)

$$ \left(\mathrm{202519}\right)^{\mathrm{2025}} \: \\ $$$$\: \\ $$

Question Number 227151    Answers: 1   Comments: 0

$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 227149    Answers: 1   Comments: 0

Question Number 227146    Answers: 2   Comments: 0

Question Number 227128    Answers: 1   Comments: 0

Question Number 227127    Answers: 1   Comments: 2

prove: ∫_0 ^1 ((lnx)/(1+x^6 ))dx=(π^2 /(12(√3)))−(5/9)G

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{prove}: \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}{x}}{\mathrm{1}+{x}^{\mathrm{6}} }{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{12}\sqrt{\mathrm{3}}}−\frac{\mathrm{5}}{\mathrm{9}}\boldsymbol{\mathrm{G}} \\ $$$$ \\ $$

Question Number 227126    Answers: 0   Comments: 0

Question Number 227124    Answers: 1   Comments: 0

((2025×2026×2027 + 2026))^(1/3) = ?

$$\sqrt[{\mathrm{3}}]{\mathrm{2025}×\mathrm{2026}×\mathrm{2027}\:+\:\mathrm{2026}}\:=\:?\:\:\:\:\:\:\: \\ $$

Question Number 227139    Answers: 2   Comments: 0

Question Number 227115    Answers: 2   Comments: 0

prove:Π_(i=1) ^n i sin(1/i)>(1/(n(n+1)))

$$\mathrm{prove}:\underset{{i}=\mathrm{1}} {\overset{{n}} {\prod}}{i}\:\mathrm{sin}\frac{\mathrm{1}}{{i}}>\frac{\mathrm{1}}{{n}\left({n}+\mathrm{1}\right)} \\ $$

Question Number 227113    Answers: 1   Comments: 0

∫_0 ^1 ⌊log_2 (x−2^(⌊log_2 x⌋) )⌋dx

$$\int_{\mathrm{0}} ^{\mathrm{1}} \lfloor\mathrm{log}_{\mathrm{2}} \left({x}−\mathrm{2}^{\lfloor\mathrm{log}_{\mathrm{2}} {x}\rfloor} \right)\rfloor{dx} \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com