Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 93

Question Number 181099    Answers: 2   Comments: 0

prove that for every positivenumber p e q wee have: p+q≥(√(4pq))

$$ \\ $$$$\mathrm{prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{every}\: \\ $$$$\mathrm{positivenumber}\:\mathrm{p}\:\mathrm{e}\:\mathrm{q}\:\mathrm{wee} \\ $$$$\mathrm{hav}{e}: \\ $$$${p}+{q}\geqslant\sqrt{\mathrm{4}{pq}} \\ $$

Question Number 181089    Answers: 1   Comments: 0

Question Number 181079    Answers: 6   Comments: 2

Solve for x : (((x + a)/(x + b)))^3 = ((x + 2a − b)/(x − a + 2b))

$$\mathrm{Solve}\:\mathrm{for}\:{x}\:: \\ $$$$\left(\frac{{x}\:+\:{a}}{{x}\:+\:{b}}\right)^{\mathrm{3}} =\:\frac{{x}\:+\:\mathrm{2}{a}\:−\:{b}}{{x}\:−\:{a}\:+\:\mathrm{2}{b}} \\ $$

Question Number 181041    Answers: 0   Comments: 0

If f(x)= x − ⌊ ((x−1)/3) ⌋ , g( x)= 2^( x) then , R_( gof) = ?

$$ \\ $$$$\:\:\:\mathrm{I}{f}\:\:\:\:{f}\left({x}\right)=\:{x}\:−\:\lfloor\:\frac{{x}−\mathrm{1}}{\mathrm{3}}\:\rfloor\:,\:\:{g}\left(\:{x}\right)=\:\mathrm{2}^{\:{x}} \\ $$$$\:\:\:\:\:\:\:{then}\:\:,\:\:\:\:\:\:{R}_{\:{gof}} \:=\:? \\ $$

Question Number 181020    Answers: 1   Comments: 0

solve for x>0 ∫_0 ^x ⌊t⌋^2 dt=2(x−1) (Q180780 reposted)

$${solve}\:{for}\:{x}>\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{{x}} \lfloor{t}\rfloor^{\mathrm{2}} {dt}=\mathrm{2}\left({x}−\mathrm{1}\right) \\ $$$$ \\ $$$$\left({Q}\mathrm{180780}\:{reposted}\right) \\ $$

Question Number 181007    Answers: 1   Comments: 0

[Question from Frix sir] ... I once played the game Tetris. You got points for each filled line, depending on how many lines you filled at once: 1 line = 1 point 2 lines = 3 points 3 lines = 6 points 4 lines = 10 points If you made 100 points, which possible combinations of lines did you fill when you filled 31 lines?

$$\left[{Question}\:{from}\:{Frix}\:{sir}\right] \\ $$$$...\:\mathrm{I}\:\mathrm{once}\:\mathrm{played}\:\mathrm{the}\:\mathrm{game}\:\mathrm{Tetris}.\: \\ $$$$\mathrm{You}\:\mathrm{got}\:\mathrm{points}\:\mathrm{for}\:\mathrm{each}\:\mathrm{filled}\:\mathrm{line},\: \\ $$$$\mathrm{depending}\:\mathrm{on}\:\mathrm{how}\:\mathrm{many}\:\mathrm{lines}\:\mathrm{you}\: \\ $$$$\mathrm{filled}\:\mathrm{at}\:\mathrm{once}: \\ $$$$\mathrm{1}\:\mathrm{line}\:=\:\mathrm{1}\:\mathrm{point} \\ $$$$\mathrm{2}\:\mathrm{lines}\:=\:\mathrm{3}\:\mathrm{points} \\ $$$$\mathrm{3}\:\mathrm{lines}\:=\:\mathrm{6}\:\mathrm{points} \\ $$$$\mathrm{4}\:\mathrm{lines}\:=\:\mathrm{10}\:\mathrm{points} \\ $$$$\mathrm{If}\:\mathrm{you}\:\mathrm{made}\:\mathrm{100}\:\mathrm{points},\:\mathrm{which}\:\mathrm{possible} \\ $$$$\mathrm{combinations}\:\mathrm{of}\:\mathrm{lines}\:\mathrm{did}\:\mathrm{you}\:\mathrm{fill}\:\mathrm{when} \\ $$$$\mathrm{you}\:\mathrm{filled}\:\mathrm{31}\:\mathrm{lines}? \\ $$

Question Number 180977    Answers: 3   Comments: 0

what is larger, 3^(100) +4^(100) or 5^(100) ?

$${what}\:{is}\:{larger},\:\mathrm{3}^{\mathrm{100}} +\mathrm{4}^{\mathrm{100}} \:{or}\:\:\mathrm{5}^{\mathrm{100}} ? \\ $$

Question Number 180953    Answers: 2   Comments: 0

What′s the smallest value of a^2 +b^2 +(1/(ab)) for a, b>0?

$${What}'{s}\:{the}\:{smallest}\:{value}\:{of} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\frac{\mathrm{1}}{{ab}}\:{for}\:{a},\:{b}>\mathrm{0}? \\ $$

Question Number 181066    Answers: 1   Comments: 1

Find the value of the expression: 2arcctg(tg3) − 3arctg(ctg2) a)2π−3 b)12 c)−6 d)π−4/2 e)3π/2

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{expression}: \\ $$$$\mathrm{2arcctg}\left(\mathrm{tg3}\right)\:−\:\mathrm{3arctg}\left(\mathrm{ctg2}\right) \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{2}\left.\pi\left.−\mathrm{3}\:\:\mathrm{b}\right)\mathrm{12}\:\:\mathrm{c}\right)−\mathrm{6}\:\:\mathrm{d}\right)\pi−\mathrm{4}/\mathrm{2}\:\:\mathrm{e}\right)\mathrm{3}\pi/\mathrm{2} \\ $$

Question Number 180943    Answers: 2   Comments: 0

if: a , bc^(−) = 1 + (1/2) + (3/(50)) find: a+b+c=?

$$\mathrm{if}:\:\:\:\overline {\mathrm{a}\:,\:\mathrm{bc}}\:=\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{50}} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$

Question Number 180938    Answers: 2   Comments: 0

ab^(−) + ba^(−) = c3^(−) find: a+b+2c=?

$$\overline {\mathrm{ab}}\:+\:\overline {\mathrm{ba}}\:=\:\overline {\mathrm{c3}} \\ $$$$\mathrm{find}:\:\:\:\mathrm{a}+\mathrm{b}+\mathrm{2c}=? \\ $$

Question Number 180923    Answers: 1   Comments: 0

Question Number 180889    Answers: 0   Comments: 1

the average of 10 numbers is 5. the sum of their squares is 5000. how large can the largest number among them at most be and how small can the smallest number among them at most be?

$${the}\:{average}\:{of}\:\mathrm{10}\:{numbers}\:{is}\:\mathrm{5}.\:{the} \\ $$$${sum}\:{of}\:{their}\:{squares}\:{is}\:\mathrm{5000}.\:{how}\: \\ $$$${large}\:{can}\:{the}\:{largest}\:{number}\:{among} \\ $$$${them}\:{at}\:{most}\:{be}\:{and}\:{how}\:{small}\:{can}\: \\ $$$${the}\:{smallest}\:{number}\:{among}\:{them} \\ $$$${at}\:{most}\:{be}? \\ $$

Question Number 180873    Answers: 1   Comments: 2

If a,b,c<0 and abc(a+b+c)=64 Then find min of P=2a+b+c

$$\mathrm{If}\:\:\:\mathrm{a},\mathrm{b},\mathrm{c}<\mathrm{0}\:\:\:\mathrm{and}\:\:\:\mathrm{abc}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)=\mathrm{64} \\ $$$$\mathrm{Then}\:\mathrm{find}\:\mathrm{min}\:\mathrm{of}\:\:\:\mathrm{P}=\mathrm{2a}+\mathrm{b}+\mathrm{c} \\ $$

Question Number 180896    Answers: 0   Comments: 1

find the maximum of Σ_(i=1) ^(100) sin^3 x_i if Σ_(i=1) ^(100) sin x_i =0.

$${find}\:{the}\:{maximum}\:{of}\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\mathrm{sin}^{\mathrm{3}} \:{x}_{{i}} \\ $$$${if}\:\underset{{i}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\mathrm{sin}\:{x}_{{i}} =\mathrm{0}. \\ $$

Question Number 180856    Answers: 1   Comments: 0

find all values of m∈R such that the equation: ∫_0 ^( x) ((arctany)/y) dy = mx has two real roots: x_1 ∈(−∞;0) , x_2 ∈(0;∞)

$$\mathrm{find}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{m}\in\mathbb{R}\:\:\mathrm{such}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\boldsymbol{\mathrm{x}}} \:\frac{\mathrm{arctan}\boldsymbol{\mathrm{y}}}{\mathrm{y}}\:\mathrm{dy}\:=\:\mathrm{mx} \\ $$$$\mathrm{has}\:\mathrm{two}\:\mathrm{real}\:\mathrm{roots}:\:\:\:\mathrm{x}_{\mathrm{1}} \in\left(−\infty;\mathrm{0}\right)\:,\:\mathrm{x}_{\mathrm{2}} \in\left(\mathrm{0};\infty\right) \\ $$

Question Number 180894    Answers: 3   Comments: 2

x^3 +x=1 x^8 +3x^3 =?

$${x}^{\mathrm{3}} +{x}=\mathrm{1} \\ $$$${x}^{\mathrm{8}} +\mathrm{3}{x}^{\mathrm{3}} =? \\ $$

Question Number 180800    Answers: 0   Comments: 0

Question Number 180785    Answers: 2   Comments: 0

solve (1−x−x^2 ...)(2−x−x^2 ...)

$${solve}\:\left(\mathrm{1}−{x}−{x}^{\mathrm{2}} ...\right)\left(\mathrm{2}−{x}−{x}^{\mathrm{2}} ...\right) \\ $$

Question Number 180778    Answers: 0   Comments: 0

Question Number 180759    Answers: 1   Comments: 0

Find all functions f : R→R for all x, y ∈R such that f(f(x−y)−yf(x))=xf(y)

$${Find}\:{all}\:{functions}\:{f}\::\:\mathbb{R}\rightarrow\mathbb{R}\:{for}\:{all}\:{x},\:{y}\:\in\mathbb{R}\:{such}\:{that} \\ $$$${f}\left({f}\left({x}−{y}\right)−{yf}\left({x}\right)\right)={xf}\left({y}\right) \\ $$

Question Number 180728    Answers: 1   Comments: 0

Given x, y, z∈R^+ such that x^2 −3xy+4y^2 −z=0. when ((xy)/z) reaches its max value, find the max value of (2/x)+(1/y)−(2/z).

$$\mathrm{Given}\:{x},\:{y},\:{z}\in\mathbb{R}^{+} \:\mathrm{such}\:\mathrm{that}\:{x}^{\mathrm{2}} −\mathrm{3}{xy}+\mathrm{4}{y}^{\mathrm{2}} −{z}=\mathrm{0}. \\ $$$$\mathrm{when}\:\frac{{xy}}{{z}}\:\mathrm{reaches}\:\mathrm{its}\:\mathrm{max}\:\mathrm{value},\:\mathrm{find}\:\mathrm{the}\:\mathrm{max}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{{y}}−\frac{\mathrm{2}}{{z}}. \\ $$

Question Number 180744    Answers: 2   Comments: 2

Question Number 180604    Answers: 1   Comments: 0

Question Number 180603    Answers: 0   Comments: 1

find the real solution of following equation system: x^2 +xy+y^2 =p y^2 +yz+z^2 =q z^2 +zx+x^2 =r with p,q,r>0

$${find}\:{the}\:{real}\:{solution}\:{of}\:{following} \\ $$$${equation}\:{system}: \\ $$$$\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{xy}}+\boldsymbol{{y}}^{\mathrm{2}} =\boldsymbol{{p}} \\ $$$$\boldsymbol{{y}}^{\mathrm{2}} +\boldsymbol{{yz}}+\boldsymbol{{z}}^{\mathrm{2}} =\boldsymbol{{q}} \\ $$$$\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{zx}}+\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{r}} \\ $$$${with}\:{p},{q},{r}>\mathrm{0} \\ $$

Question Number 180569    Answers: 1   Comments: 1

(√(x+4)) − (√(x−1)) > (√(4x+5))

$$\sqrt{\boldsymbol{{x}}+\mathrm{4}}\:−\:\sqrt{\boldsymbol{{x}}−\mathrm{1}}\:>\:\sqrt{\mathrm{4}\boldsymbol{{x}}+\mathrm{5}} \\ $$

  Pg 88      Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95      Pg 96      Pg 97   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com