Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 91

Question Number 178500    Answers: 1   Comments: 1

Question Number 178452    Answers: 1   Comments: 0

show that ((p∧q)⇒r)⇒((p∧∼r)⇒∼q) is tautology

$$\:\:\:\:\:\:\:\:\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\left(\left(\mathrm{p}\wedge\mathrm{q}\right)\Rightarrow\mathrm{r}\right)\Rightarrow\left(\left(\mathrm{p}\wedge\sim\mathrm{r}\right)\Rightarrow\sim\mathrm{q}\right) \\ $$$$\:\:\:\mathrm{is}\:\mathrm{tautology}\: \\ $$

Question Number 178448    Answers: 1   Comments: 0

Using the algebra propositions simplify (p↔q)→(p→q)

$$\mathrm{Using}\:\mathrm{the}\:\mathrm{algebra}\:\mathrm{propositions} \\ $$$$\mathrm{simplify} \\ $$$$\left(\mathrm{p}\leftrightarrow\mathrm{q}\right)\rightarrow\left(\mathrm{p}\rightarrow\mathrm{q}\right) \\ $$

Question Number 178434    Answers: 3   Comments: 0

Simplify by using law of algebra (a) [p∨(p∧q)]→∼p (b)(p∧q)→q

$$\mathrm{Simplify}\:\mathrm{by}\:\mathrm{using}\:\mathrm{law}\:\mathrm{of}\:\mathrm{algebra} \\ $$$$\left(\mathrm{a}\right)\:\left[\mathrm{p}\vee\left(\mathrm{p}\wedge\mathrm{q}\right)\right]\rightarrow\sim\mathrm{p} \\ $$$$\left(\mathrm{b}\right)\left(\mathrm{p}\wedge\mathrm{q}\right)\rightarrow\mathrm{q} \\ $$

Question Number 178433    Answers: 1   Comments: 0

Determine whether the following proposition is true or not [(p→∼q)∧(q∨r)∧p]→r

$$\mathrm{Determine}\:\mathrm{whether}\:\mathrm{the}\:\mathrm{following} \\ $$$$\mathrm{proposition}\:\mathrm{is}\:\mathrm{true}\:\mathrm{or}\:\mathrm{not} \\ $$$$\left[\left(\mathrm{p}\rightarrow\sim\mathrm{q}\right)\wedge\left(\mathrm{q}\vee\mathrm{r}\right)\wedge\mathrm{p}\right]\rightarrow\mathrm{r} \\ $$

Question Number 178423    Answers: 2   Comments: 0

(m/n) = (k/p) and (m/n) = (k/p) = 1,5 Find (m/n) + (k/p) = ?

$$\frac{\mathrm{m}}{\mathrm{n}}\:=\:\frac{\mathrm{k}}{\mathrm{p}}\:\:\:\mathrm{and}\:\:\:\frac{\mathrm{m}}{\mathrm{n}}\:=\:\frac{\mathrm{k}}{\mathrm{p}}\:=\:\mathrm{1},\mathrm{5} \\ $$$$\mathrm{Find}\:\:\:\frac{\mathrm{m}}{\mathrm{n}}\:+\:\frac{\mathrm{k}}{\mathrm{p}}\:=\:? \\ $$

Question Number 178415    Answers: 2   Comments: 0

If acosh x+bsinh x=c show that. x=ln [((c±(√(c^2 +b^2 −a^2 )))/(a+b))]

$$\mathrm{If}\:\mathrm{acosh}\:\mathrm{x}+\mathrm{bsinh}\:\mathrm{x}=\mathrm{c}\: \\ $$$$\mathrm{show}\:\mathrm{that}. \\ $$$$\mathrm{x}=\mathrm{ln}\:\left[\frac{\mathrm{c}\pm\sqrt{\mathrm{c}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} −\mathrm{a}^{\mathrm{2}} }}{\mathrm{a}+\mathrm{b}}\right] \\ $$

Question Number 178413    Answers: 1   Comments: 2

(2x^3 y+3xy−5x^2 y^2 +12)÷(2x−4) Divide it using compound division

$$\left(\mathrm{2}{x}^{\mathrm{3}} {y}+\mathrm{3}{xy}−\mathrm{5}{x}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{12}\right)\boldsymbol{\div}\left(\mathrm{2}{x}−\mathrm{4}\right) \\ $$$$ \\ $$Divide it using compound division

Question Number 178412    Answers: 1   Comments: 0

Express sinh^(−1) x−ln x in terms of natural logarithms.Hence find the limit as x→∞

$$\mathrm{Express}\:\mathrm{sinh}\:^{−\mathrm{1}} \mathrm{x}−\mathrm{ln}\:\mathrm{x}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of} \\ $$$$\mathrm{natural}\:\mathrm{logarithms}.\mathrm{Hence}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{limit}\:\mathrm{as}\:\mathrm{x}\rightarrow\infty \\ $$

Question Number 178400    Answers: 1   Comments: 0

evaluate Σ_(k=1) ^n k e^(kx)

$$\:\:\mathrm{evaluate}\:\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\mathrm{k}\:\mathrm{e}^{\mathrm{kx}} \\ $$

Question Number 178476    Answers: 1   Comments: 0

Find a∈R Such that x_1 ^(16) + x_2 ^(16) + x_3 ^(16) = 30 Where x_1 ,x_2 ,x_3 − are the roots of the equation: x^3 + ax + 1 = 0

$$\mathrm{Find}\:\:\mathrm{a}\in\mathbb{R} \\ $$$$\mathrm{Such}\:\mathrm{that}\:\:\mathrm{x}_{\mathrm{1}} ^{\mathrm{16}} \:+\:\mathrm{x}_{\mathrm{2}} ^{\mathrm{16}} \:+\:\mathrm{x}_{\mathrm{3}} ^{\mathrm{16}} \:=\:\mathrm{30} \\ $$$$\mathrm{Where}\:\:\mathrm{x}_{\mathrm{1}} ,\mathrm{x}_{\mathrm{2}} ,\mathrm{x}_{\mathrm{3}} −\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}:\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{ax}\:+\:\mathrm{1}\:=\:\mathrm{0} \\ $$

Question Number 178389    Answers: 1   Comments: 0

show that p⇒((p⇒q)⇒q) is tautology

$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{show}\:\mathrm{that}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{p}\Rightarrow\left(\left(\mathrm{p}\Rightarrow\mathrm{q}\right)\Rightarrow\mathrm{q}\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{is}\:\mathrm{tautology}\: \\ $$

Question Number 178374    Answers: 1   Comments: 0

Let the points ABC form a triangle on the cartesian plane, whose area is 20. Let the coordinates of said points be A(8, 6) B(2, 4) and C(x, y) If ∣AC∣=∣BC∣, find the coordinates of point C.

$${Let}\:{the}\:{points}\:{ABC}\:{form}\:{a}\:{triangle}\:{on}\:{the} \\ $$$${cartesian}\:{plane},\:{whose}\:{area}\:{is}\:\mathrm{20}.\:{Let}\:{the}\:{coordinates} \\ $$$${of}\:{said}\:{points}\:{be}\:{A}\left(\mathrm{8},\:\mathrm{6}\right)\:{B}\left(\mathrm{2},\:\mathrm{4}\right)\:{and}\:{C}\left({x},\:{y}\right) \\ $$$${If}\:\mid{AC}\mid=\mid{BC}\mid,\:{find}\:{the}\:{coordinates}\:{of}\:{point}\:{C}. \\ $$

Question Number 180641    Answers: 4   Comments: 0

if a+b+c+d+e=8 and a^2 +b^2 +c^2 +d^2 +e^2 =16, what is the maximal value of a ?

$${if}\:{a}+{b}+{c}+{d}+{e}=\mathrm{8}\:{and} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} +{d}^{\mathrm{2}} +{e}^{\mathrm{2}} =\mathrm{16},\:{what}\:{is}\:{the} \\ $$$${maximal}\:{value}\:{of}\:{a}\:? \\ $$

Question Number 178358    Answers: 0   Comments: 0

Show that when x is small ln (cosh x)≈(x^2 /2)−(x^4 /(12))+... and that when x is large ln (cosh x)≈x−ln 2

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{when}\:\mathrm{x}\:\mathrm{is}\:\mathrm{small}\: \\ $$$$\mathrm{ln}\:\left(\mathrm{cosh}\:\mathrm{x}\right)\approx\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{x}^{\mathrm{4}} }{\mathrm{12}}+...\:\mathrm{and} \\ $$$$\mathrm{that}\:\mathrm{when}\:\mathrm{x}\:\mathrm{is}\:\mathrm{large}\:\mathrm{ln}\:\left(\mathrm{cosh}\:\mathrm{x}\right)\approx\mathrm{x}−\mathrm{ln}\:\mathrm{2} \\ $$

Question Number 178357    Answers: 1   Comments: 0

Given that sinh^(−1) x=sech^(−1) x show x=(√((((√5)−1)/2) ))

$$\mathrm{Given}\:\mathrm{that}\:\mathrm{sinh}\:^{−\mathrm{1}} \mathrm{x}=\mathrm{sech}\:^{−\mathrm{1}} \mathrm{x}\:\:\: \\ $$$$\mathrm{show} \\ $$$$\mathrm{x}=\sqrt{\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\:} \\ $$

Question Number 178356    Answers: 1   Comments: 0

Solve simultaneous sinh x+cosh y=5 sinh^2 x+cosh^2 y=13

$$\mathrm{Solve}\:\mathrm{simultaneous} \\ $$$$\mathrm{sinh}\:\mathrm{x}+\mathrm{cosh}\:\mathrm{y}=\mathrm{5} \\ $$$$\mathrm{sinh}\:^{\mathrm{2}} \mathrm{x}+\mathrm{cosh}\:^{\mathrm{2}} \mathrm{y}=\mathrm{13} \\ $$

Question Number 178355    Answers: 1   Comments: 0

Show that cosh x>sinh x

$$\mathrm{Show}\:\mathrm{that}\: \\ $$$$\mathrm{cosh}\:\mathrm{x}>\mathrm{sinh}\:\mathrm{x} \\ $$

Question Number 178354    Answers: 1   Comments: 0

Show that the minimum value of sinh x+ncosh x is (√(n^2 −1)) and this occurs x=0.5ln (((n−1)/(n+1)))

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{sinh}\:\mathrm{x}+\mathrm{ncosh}\:\mathrm{x}\:\mathrm{is}\:\sqrt{\mathrm{n}^{\mathrm{2}} −\mathrm{1}} \\ $$$$\mathrm{and}\:\mathrm{this}\:\mathrm{occurs}\:\mathrm{x}=\mathrm{0}.\mathrm{5ln}\:\left(\frac{\mathrm{n}−\mathrm{1}}{\mathrm{n}+\mathrm{1}}\right) \\ $$

Question Number 179992    Answers: 0   Comments: 0

What is the absolute error for the measurements: (a) 250m to the nearest 10m. (b) 143m to three sig. figures. (c) 41500cm to the nearest 100.

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{absolute}\:\mathrm{error}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{measurements}: \\ $$$$\:\:\:\:\left({a}\right)\:\mathrm{250}{m}\:\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{10}{m}. \\ $$$$\:\:\:\:\left({b}\right)\:\mathrm{143}{m}\:\mathrm{to}\:\mathrm{three}\:\mathrm{sig}.\:\mathrm{figures}. \\ $$$$\:\:\:\:\left({c}\right)\:\:\mathrm{41500}{cm}\:\mathrm{to}\:\mathrm{the}\:\mathrm{nearest}\:\mathrm{100}. \\ $$

Question Number 178347    Answers: 2   Comments: 0

Let f(x)= (ax+1)^5 .(1+bx)^4 ; a,b ∈ N if times of x equal 62 so what are possible values of the sum a, b?

$${Let}\:{f}\left({x}\right)=\:\left({ax}+\mathrm{1}\right)^{\mathrm{5}} .\left(\mathrm{1}+{bx}\right)^{\mathrm{4}} \:;\:{a},{b}\:\in\:\mathbb{N} \\ $$$$\:{if}\:{times}\:{of}\:{x}\:{equal}\:\mathrm{62}\:{so}\:{what}\:{are}\:{possible}\:{values} \\ $$$$\:{of}\:{the}\:{sum}\:{a},\:{b}? \\ $$$$ \\ $$

Question Number 178338    Answers: 3   Comments: 1

Let S= {1, 2, ..., 9, 0} A: How many multiples of eight of four digits can be formed from S B: The same question for different digits

$${Let}\:{S}=\:\left\{\mathrm{1},\:\mathrm{2},\:...,\:\mathrm{9},\:\mathrm{0}\right\}\:\boldsymbol{{A}}:\:{How}\:{many}\:{multiples} \\ $$$$\:{of}\:{eight}\:{of}\:{four}\:{digits}\:{can}\:{be}\:{formed}\:{from}\:{S} \\ $$$$\:\boldsymbol{{B}}:\:{The}\:{same}\:{question}\:{for}\:{different}\:{digits} \\ $$

Question Number 178320    Answers: 1   Comments: 2

Question Number 178305    Answers: 0   Comments: 0

Question Number 178251    Answers: 3   Comments: 0

solve (x^2 −5)^2 −x=5

$${solve} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{5}\right)^{\mathrm{2}} −{x}=\mathrm{5} \\ $$

Question Number 178240    Answers: 1   Comments: 0

((a^(n+1) + b^(n+1) )/(a^n + b^n )) = (√(ab)) find n=?

$$\frac{\mathrm{a}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }{\mathrm{a}^{\boldsymbol{\mathrm{n}}} \:+\:\mathrm{b}^{\boldsymbol{\mathrm{n}}} }\:=\:\sqrt{\mathrm{ab}}\:\:\:\mathrm{find}\:\:\:\mathrm{n}=? \\ $$

  Pg 86      Pg 87      Pg 88      Pg 89      Pg 90      Pg 91      Pg 92      Pg 93      Pg 94      Pg 95   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com