Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 86
Question Number 187357 Answers: 1 Comments: 0
Question Number 187302 Answers: 0 Comments: 0
$${f}\left(\mathrm{4}\right)=\mathrm{44},\:{f}\left({m}\right)=\mathrm{52},{f}\left({l}\right)=−\mathrm{33} \\ $$$${l},{m}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers}\:\mathrm{such}\:\mathrm{that}\:\mathrm{4}<{m}<{l} \\ $$$$\mathrm{and}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{with}\:\mathrm{integer}\:\mathrm{coefficients}. \\ $$$$\mathrm{Find}\:{l}+{m}. \\ $$
Question Number 187295 Answers: 0 Comments: 2
$${solve}: \\ $$$$\left(\sqrt{\left.\mathrm{4}+\sqrt{\mathrm{4}}\right)\:^{{x}} }\:+\left[\sqrt{\mathrm{4}−\sqrt{\left.\mathrm{4}\right]^{{x}} }}\:=\mathrm{4}^{{x}} \right.\right. \\ $$
Question Number 187294 Answers: 0 Comments: 1
$${solve}: \\ $$$$−\mathrm{1}−\left[{x}^{{x}} −\mathrm{5}{x}+\mathrm{6}\right]^{{x}} =\mathrm{1} \\ $$
Question Number 187288 Answers: 1 Comments: 0
$${logx}+{x}!=\mathrm{2} \\ $$$${x}=? \\ $$
Question Number 187255 Answers: 1 Comments: 0
$${Find}\:{the}\:{directional}\:{derivatives}\:{of}\:{the} \\ $$$${function}\: \\ $$$${f}\left({x},\mathrm{y},\mathrm{z}\right)=\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:{at}\:{the}\:{point}\:{p}\left(\mathrm{2},\mathrm{1},\mathrm{3}\right) \\ $$
Question Number 187254 Answers: 1 Comments: 0
Question Number 187248 Answers: 0 Comments: 1
$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{cardinality}\:\mathrm{of}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{whose} \\ $$$$\mathrm{base}\:\mathrm{ten}\:\mathrm{digits}\:\mathrm{sums}\:\mathrm{up}\:\mathrm{to}\:\mathrm{10} \\ $$
Question Number 187233 Answers: 1 Comments: 1
$${Find}\:{x}\:{if}\::\:\:\:{x}^{\mathrm{4}} +{a}={x}\:\:\:\:\forall\:\left(\mathrm{0}<{a}<\frac{\mathrm{2}}{\mathrm{9}}\right)\:\:\: \\ $$
Question Number 187209 Answers: 0 Comments: 1
Question Number 187166 Answers: 0 Comments: 0
$${x}^{\mathrm{3}} ={x}+{c} \\ $$$${let}\:\:{x}=\frac{{mt}}{\mathrm{1}−{t}} \\ $$$${m}^{\mathrm{3}} {t}^{\mathrm{3}} ={mt}\left(\mathrm{1}−{t}\right)^{\mathrm{2}} +{c}\left(\mathrm{1}−{t}\right)^{\mathrm{3}} \\ $$$$\Rightarrow \\ $$$$\left({m}^{\mathrm{3}} −{m}−{c}\right){t}^{\mathrm{3}} +\left(\mathrm{2}{m}−\mathrm{3}{c}\right){t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:+\left(\mathrm{3}{c}−{m}\right){t}−{c}=\mathrm{0} \\ $$$${t}^{\mathrm{3}} +{At}^{\mathrm{2}} +{Bt}+{C}=\mathrm{0} \\ $$$${let}\:\:{AB}={C} \\ $$$$\Rightarrow\:\left(\mathrm{2}{m}−\mathrm{3}{c}\right)\left({m}−\mathrm{3}{c}\right)={c}\left({m}^{\mathrm{3}} −{m}−{c}\right) \\ $$$$\Rightarrow\:{m}^{\mathrm{3}} −\frac{\mathrm{2}}{{c}}{m}^{\mathrm{2}} −\mathrm{8}{m}+\mathrm{10}{c}=\mathrm{0} \\ $$$$... \\ $$
Question Number 187124 Answers: 2 Comments: 0
$$\frac{{a}}{{x}}=\frac{{b}}{{y}}=\frac{{c}}{{z}}=\frac{\mathrm{1}}{\mathrm{3}}\:, \\ $$$${a}−\mathrm{2}{b}+{c}=\mathrm{2}\:\:{and}\:\:−\mathrm{2}{y}+{z}=\mathrm{1}\:\:\:\: \\ $$$${x}=? \\ $$$${An}\:{altered}\:{form}\:{of}\:\:{q}#\mathrm{187020} \\ $$$$\left({In}\:{this}\:{case}\:{solveable}\right) \\ $$
Question Number 187008 Answers: 2 Comments: 0
$$\frac{{a}}{\mathrm{3}}=\frac{{b}}{\mathrm{4}}=\frac{{c}}{\mathrm{5}}\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{a}+{c}=\mathrm{42}\:\:\:\:\:\:\:\:{b}=? \\ $$$${how}\:{is}\:{solution} \\ $$
Question Number 186941 Answers: 0 Comments: 1
$$\frac{{sinx}}{{x}^{{b}} }=\frac{\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}{x}^{\mathrm{2}{n}+\mathrm{1}} }{{x}^{{b}} } \\ $$$${prove}\:{that} \\ $$
Question Number 186929 Answers: 3 Comments: 0
$$\:\:{If}\:\begin{cases}{{B}+{R}+{P}=−\mathrm{1}}\\{{B}^{\mathrm{2}} +{R}^{\mathrm{2}} +{P}^{\mathrm{2}} =\mathrm{17}}\\{{B}^{\mathrm{3}} +{R}^{\mathrm{3}} +{P}^{\mathrm{3}} =\mathrm{11}}\end{cases} \\ $$$$\:{then}\:{B}^{\mathrm{5}} +{R}^{\mathrm{5}} +{P}^{\mathrm{5}} \:=? \\ $$
Question Number 186867 Answers: 2 Comments: 0
Question Number 186864 Answers: 2 Comments: 0
$${if}\:\:{AB},{BA}\:{and}\:{BB}\:\:{three}\:\:{tow}\:{digits}\:{natural} \\ $$$${numbers}\:{if}\:\:\frac{\left({AB}+{BA}\right)}{{BB}}=\mathrm{4} \\ $$$${then}\:{find}\:{the}\:{maximum}\:{volue}\:{of} \\ $$$$\left({A}+{B}\right)=? \\ $$
Question Number 186772 Answers: 0 Comments: 0
$$ \\ $$
Question Number 186701 Answers: 2 Comments: 2
Question Number 186690 Answers: 1 Comments: 0
Question Number 186682 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{set}\:\mathrm{identities} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{A}\cup\left(\mathrm{B}\cup\mathrm{C}\right)=\left(\mathrm{A}\cup\mathrm{B}\right)\cup\mathrm{C} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{A}\cup\varnothing=\mathrm{A} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{A}\cap\left(\mathrm{B}\cup\mathrm{C}\right)=\left(\mathrm{A}\cap\mathrm{B}\right)\cup\left(\mathrm{A}\cap\mathrm{C}\right) \\ $$
Question Number 186732 Answers: 2 Comments: 0
Question Number 186657 Answers: 1 Comments: 0
Question Number 186616 Answers: 1 Comments: 0
Question Number 186627 Answers: 2 Comments: 1
Question Number 186582 Answers: 0 Comments: 0
$$\left(\frac{\mathrm{10}{x}^{\mathrm{3}} −{c}}{\mathrm{4}{x}^{\mathrm{4}} −{x}+\mathrm{1}}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} ={x}\left({x}^{\mathrm{3}} +\mathrm{1}\right) \\ $$
Pg 81 Pg 82 Pg 83 Pg 84 Pg 85 Pg 86 Pg 87 Pg 88 Pg 89 Pg 90
Terms of Service
Privacy Policy
Contact: info@tinkutara.com