Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 86
Question Number 186682 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{set}\:\mathrm{identities} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{A}\cup\left(\mathrm{B}\cup\mathrm{C}\right)=\left(\mathrm{A}\cup\mathrm{B}\right)\cup\mathrm{C} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{A}\cup\varnothing=\mathrm{A} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{A}\cap\left(\mathrm{B}\cup\mathrm{C}\right)=\left(\mathrm{A}\cap\mathrm{B}\right)\cup\left(\mathrm{A}\cap\mathrm{C}\right) \\ $$
Question Number 186732 Answers: 2 Comments: 0
Question Number 186657 Answers: 1 Comments: 0
Question Number 186616 Answers: 1 Comments: 0
Question Number 186627 Answers: 2 Comments: 1
Question Number 186582 Answers: 0 Comments: 0
$$\left(\frac{\mathrm{10}{x}^{\mathrm{3}} −{c}}{\mathrm{4}{x}^{\mathrm{4}} −{x}+\mathrm{1}}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} ={x}\left({x}^{\mathrm{3}} +\mathrm{1}\right) \\ $$
Question Number 186572 Answers: 1 Comments: 0
$${f}=\left\{\left(\mathrm{1},\mathrm{2}\right),\left(\mathrm{4},\mathrm{6}\right),\left(\mathrm{5},\mathrm{8}\right)\right\}\:\:{and}\:\:\:{g}=\left\{\left(\mathrm{1},\mathrm{7}\right),\left(\mathrm{2},\mathrm{4}\right),\left(\mathrm{5},\mathrm{8}\right)\right\} \\ $$$${the}\:{domain}\:{of}\:\:\:{f}\left({g}\left({x}\right)\right)\:\:\:{which}\:{number}\:{is}\:{not}\:{include}? \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{1}\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\right){all}\:{corect} \\ $$$${how}\:{is}\:{the}\:{solution}? \\ $$
Question Number 186571 Answers: 2 Comments: 0
$${If}\:\:\:{x}=−\frac{\mathrm{1}}{\left(\mathrm{1}+{m}\right)}\left(\frac{\mathrm{2}}{\mathrm{3}}\pm\sqrt{\frac{\mathrm{4}}{\mathrm{9}}\pm\frac{{ia}\sqrt{{m}}}{\mathrm{12}}}\right) \\ $$$${where}\:\:\:\left(\mathrm{1}+{m}\right)^{\mathrm{2}} ={am} \\ $$$$\:\:\:\:{and}\:{that}\:\:\mathrm{9}{a}\left({a}+\mathrm{16}\right)^{\mathrm{2}} =\left(\mathrm{16}\right)^{\mathrm{3}} \\ $$$${Find}\:{real}\:{x}. \\ $$
Question Number 186544 Answers: 0 Comments: 1
Question Number 186540 Answers: 0 Comments: 0
$${Complex}\:{Numbers} \\ $$$${Prove}\:{that} \\ $$$$\:\mathrm{1}.\:\mid{Z}_{\mathrm{1}} +{Z}_{\mathrm{2}} \mid\leq\mid{Z}_{\mathrm{1}} \mid+\mid{Z}_{\mathrm{2}} \mid \\ $$$$\mathrm{2}.\:\mid{Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \mid\geq\mid{Z}_{\mathrm{1}} \mid−\mid{Z}_{\mathrm{2}} \mid \\ $$
Question Number 186503 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:{function}\:{of}\:,\:{f}\:\left({x}\right)\:=\:{ax}\:\:+\:\mid\:{x}\:\mid\:{is}\:\:{one}\:{to}\:{one} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:.{find}\:\:\:\:''\:\:\:\:{a}\:\:\:\:''\:\:. \\ $$$$\:\: \\ $$
Question Number 186489 Answers: 1 Comments: 0
Question Number 186486 Answers: 0 Comments: 6
$${Question}\:{propose}\:{par} \\ $$$${Migma} \\ $$$$−−−−−−−−−−− \\ $$$${calcul}\:{de}\:{X} \\ $$$$ \\ $$$$\bigtriangleup{ABC}\:\:\:\:\:\:\measuredangle{ACB}=\mathrm{40}^{°} \\ $$$$\mathrm{AB}^{\mathrm{2}} =\mathrm{AC}^{\mathrm{2}} +\mathrm{BC}^{\mathrm{2}} −\mathrm{2AC}×\mathrm{BCcos}\:\mathrm{40}\:\:\:\: \\ $$$$\mathrm{AC}=\mathrm{15}\:\:;\:\:\:\:\mathrm{AB}=\mathrm{X}+\mathrm{4}\:;\:\:\:\mathrm{BC}=\mathrm{10} \\ $$$$\left(\mathrm{X}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{15}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{300}×\mathrm{cos}\:\mathrm{40} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{325}−\mathrm{229},\mathrm{81334} \\ $$$$\left({X}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{95},\mathrm{18666706} \\ $$$${posons}\:\:\:{Z}={X}+\mathrm{4} \\ $$$$\:\:\:{Z}^{\mathrm{2}} =\mathrm{9},\mathrm{756}^{\mathrm{2}} \:\:\:\:\Rightarrow\mathrm{X}+\mathrm{4}=\mathrm{9},\mathrm{756} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{X}=\mathrm{5},\mathrm{756} \\ $$$$ \\ $$
Question Number 186419 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\mathrm{I}{f}\:,\:\sqrt[{\mathrm{3}}]{\:\mathrm{1}\:−\:{l}\overset{} {{o}g}_{\:\mathrm{2}} \left({x}\right)}\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{1}\overset{} {+}{log}_{\:\mathrm{2}} \left({x}\right)}\:−\mathrm{1}=\mathrm{0}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\:{x}\:=\:?\:\:\:\: \\ $$
Question Number 186330 Answers: 0 Comments: 1
Question Number 186329 Answers: 1 Comments: 0
Question Number 186305 Answers: 0 Comments: 3
$$\mathrm{log}\:\left(\frac{\mathrm{3}.\bar {\mathrm{2}}}{\mathrm{3}.\bar {\mathrm{1}}}\right)\:\:\:\:\:\:\:{find}\:\mathrm{Characteristic}? \\ $$
Question Number 186300 Answers: 1 Comments: 0
$$\:\:\: \\ $$$$\:\:\:\:\:\mathrm{solve}\:\:\mathrm{in}\:\:\:\mathbb{R} \\ $$$$ \\ $$$$\:\:\:\lfloor\:\:\mathrm{2log}_{\:\mathrm{8}} \left({x}\right)\:+\:\frac{\mathrm{1}}{\mathrm{3}}\:\rfloor\:=\:\mathrm{log}_{\:\mathrm{4}} \left({x}\:\right)+\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$
Question Number 186292 Answers: 0 Comments: 0
$$\left({x}−{p}\right)\left({x}^{\mathrm{3}} −{x}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} −{px}^{\mathrm{3}} −{x}^{\mathrm{2}} +\left({p}−\frac{\mathrm{1}}{\mathrm{3}}\right){x}+\frac{{p}}{\mathrm{3}}=\mathrm{0} \\ $$$$\left({x}^{\mathrm{2}} +{ax}+{h}\right)\left({x}^{\mathrm{2}} +{bx}+{k}\right)=\mathrm{0} \\ $$$${a}+{b}=−{p} \\ $$$${h}+{k}+{ab}=−\mathrm{1} \\ $$$${bh}+{ak}={p}−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${hk}=\frac{{p}}{\mathrm{3}} \\ $$$$−−−−−− \\ $$$${say}\:{ab}={t} \\ $$$$−−−−−− \\ $$$${ah}+{bk}+{p}−\frac{\mathrm{1}}{\mathrm{3}}={p}\left(\mathrm{1}+{t}\right) \\ $$$${bh}+{ak}−\left({p}−\frac{\mathrm{1}}{\mathrm{3}}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\left({a}−{b}\right)\left({h}−{k}\right)={pt}−{p}+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${squaring} \\ $$$$\left({p}^{\mathrm{2}} −\mathrm{4}{t}\right)\left\{\left(\mathrm{1}+{t}\right)^{\mathrm{2}} −\frac{\mathrm{4}{p}}{\mathrm{3}}\right\}=\left({pt}−{p}+\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$${say}\:\:{t}+\mathrm{1}={z} \\ $$$$\left({p}^{\mathrm{2}} +\mathrm{4}−\mathrm{4}{z}\right)\left({z}^{\mathrm{2}} −\frac{\mathrm{4}{p}}{\mathrm{3}}\right)=\left({pz}−\mathrm{2}{p}+\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$−\mathrm{4}{z}^{\mathrm{3}} +\left({p}^{\mathrm{2}} +\mathrm{4}\right){z}^{\mathrm{2}} +\frac{\mathrm{16}{pz}}{\mathrm{3}}−\frac{\mathrm{4}{p}}{\mathrm{3}}\left({p}^{\mathrm{2}} +\mathrm{4}\right) \\ $$$$\:\:\:\:={p}^{\mathrm{2}} {z}^{\mathrm{2}} −\mathrm{4}{p}\left({p}−\frac{\mathrm{1}}{\mathrm{3}}\right){z}+\mathrm{4}\left({p}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:{z}^{\mathrm{3}} −{z}^{\mathrm{2}} −{p}\left({p}+\mathrm{1}\right){z}+\left({p}−\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:+\frac{{p}}{\mathrm{3}}\left({p}^{\mathrm{2}} +\mathrm{4}\right)=\mathrm{0} \\ $$$$.....\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 186285 Answers: 0 Comments: 2
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{R}\:\left(\mathrm{m}\:,\:\mathrm{n}\right)\:\leqslant\:\mathrm{C}_{\boldsymbol{\mathrm{m}}+\boldsymbol{\mathrm{n}}} ^{\boldsymbol{\mathrm{m}}} \\ $$$$\mathrm{Here}\:\:\mathrm{R}\:\:\mathrm{states}\:\mathrm{the}\:\:\mathrm{Ramsey}\:\:\mathrm{theory} \\ $$
Question Number 186265 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:{f}\left({x}\right)=\:\sqrt{\:{x}\:−{a}}\:\:+\:\sqrt{\mathrm{3}{a}\:−{x}}\:\:\:{with}\:\left(\:{a}>\mathrm{0}\right) \\ $$$$\:\:\:\:{is}\:\:{given}\:.{If}\:\:,\:\:{f}_{\:{max}} \:.\:{f}_{\:{min}} \:=\:\sqrt{\mathrm{32}} \\ $$$$\:\:\:\:\:{find}\:\:,\:\:\:\:\:\:\:''\:\:\:{a}\:\:''\:\:=\:? \\ $$
Question Number 186256 Answers: 0 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathbb{R}\:\left(\mathrm{m}\:,\:\mathrm{n}\right)\:\leqslant\:\mathbb{C}_{\boldsymbol{\mathrm{m}}+\boldsymbol{\mathrm{n}}} ^{\boldsymbol{\mathrm{m}}} \\ $$$$ \\ $$
Question Number 186253 Answers: 1 Comments: 1
Question Number 186249 Answers: 0 Comments: 0
Question Number 186248 Answers: 0 Comments: 0
Question Number 186241 Answers: 2 Comments: 3
$${x}+\frac{\mathrm{1}}{{x}}=\frac{−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${x}? \\ $$
Pg 81 Pg 82 Pg 83 Pg 84 Pg 85 Pg 86 Pg 87 Pg 88 Pg 89 Pg 90
Terms of Service
Privacy Policy
Contact: info@tinkutara.com