Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 85

Question Number 188928    Answers: 0   Comments: 0

Question Number 188908    Answers: 1   Comments: 0

the radius of a circle is 12cmunits find the perimeter of a regular inscribed a. triangle b.heptagon c. decagon

$${the}\:{radius}\:{of}\:{a}\:{circle}\:{is}\:\mathrm{12}{cmunits} \\ $$$${find}\:{the}\:{perimeter}\:{of}\:{a}\:{regular}\: \\ $$$${inscribed}\: \\ $$$${a}.\:{triangle} \\ $$$${b}.{heptagon} \\ $$$${c}.\:{decagon} \\ $$

Question Number 188898    Answers: 0   Comments: 0

In △ABC holds: Σ ((2 + (√3) tan (B/2))/(1 + 3 tan^2 (A/2))) ≥ (9/2)

$$\mathrm{In}\:\bigtriangleup\mathrm{ABC}\:\mathrm{holds}:\:\:\:\Sigma\:\frac{\mathrm{2}\:+\:\sqrt{\mathrm{3}}\:\mathrm{tan}\:\frac{\mathrm{B}}{\mathrm{2}}}{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{tan}^{\mathrm{2}} \:\frac{\mathrm{A}}{\mathrm{2}}}\:\geqslant\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$

Question Number 188879    Answers: 2   Comments: 3

Find the sum of all three digit numbers started with odd number when each digit are different. Please help...

$${Find}\:{the}\:{sum}\:{of}\:{all}\:{three}\:{digit}\:{numbers} \\ $$$${started}\:{with}\:{odd}\:{number}\:{when}\:{each}\:{digit} \\ $$$${are}\:{different}. \\ $$$$ \\ $$$${Please}\:{help}... \\ $$

Question Number 188864    Answers: 0   Comments: 0

Question Number 188786    Answers: 1   Comments: 1

Question Number 188776    Answers: 3   Comments: 1

Prove that n^2 +3n+2 is divisible by 2 for any n∈Z

$$\mathrm{Prove}\:\mathrm{that}\:{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{2}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2} \\ $$$$\mathrm{for}\:\mathrm{any}\:{n}\in\mathbb{Z} \\ $$

Question Number 188774    Answers: 1   Comments: 0

Question Number 188753    Answers: 1   Comments: 0

x^2 − y^2 = 2023 x, y ∈ N How many pair of (x, y)

$$\:{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:=\:\mathrm{2023}\:\:\:\:\:\:\:\:\:{x},\:{y}\:\in\:\mathrm{N} \\ $$$$\:\mathrm{H}{ow}\:{many}\:{pair}\:{of}\:\left({x},\:{y}\right) \\ $$

Question Number 188704    Answers: 1   Comments: 0

Question Number 188660    Answers: 2   Comments: 0

solve x^4 +4x=1

$${solve}\:{x}^{\mathrm{4}} +\mathrm{4}{x}=\mathrm{1} \\ $$

Question Number 188653    Answers: 0   Comments: 1

In how many different ways can the letters of the word ABRAKADABRA be arranged?

$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the} \\ $$$$\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\mathrm{ABRAKADABRA} \\ $$$$\mathrm{be}\:\mathrm{arranged}? \\ $$

Question Number 188648    Answers: 1   Comments: 0

Question Number 188647    Answers: 0   Comments: 1

Question Number 188646    Answers: 2   Comments: 0

Question Number 188619    Answers: 0   Comments: 1

Question Number 188587    Answers: 0   Comments: 0

Question Number 188572    Answers: 0   Comments: 3

Question Number 188515    Answers: 1   Comments: 0

in AB^Δ C : a=3 , b=6 , c=7 find the value of : E = (a+b )cos(C) + (b+c)cos(A)+ (a+c )cos(B)=?

$$ \\ $$$$\:\:\:\:\:{in}\:\:{A}\overset{\Delta} {{B}C}\:\::\:\:\:{a}=\mathrm{3}\:\:,\:\:{b}=\mathrm{6}\:\:,\:\:{c}=\mathrm{7} \\ $$$$\:\:\: \\ $$$$\: \\ $$$$\:\:\:\:{find}\:\:{the}\:{value}\:\:{of}\:: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:{E}\:=\:\left({a}+{b}\:\right){cos}\left({C}\right)\:+\:\left({b}+{c}\right){cos}\left({A}\right)+\:\left({a}+{c}\:\right){cos}\left({B}\right)=?\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$

Question Number 188508    Answers: 2   Comments: 0

Question Number 188482    Answers: 1   Comments: 0

512x^(1−x^(−3) ) =−1 find volue of Σ_(n=1) ^∞ (x^2 )^n =?

$$\mathrm{512}{x}^{\mathrm{1}−{x}^{−\mathrm{3}} } =−\mathrm{1} \\ $$$${find}\:\:{volue}\:\:{of}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left({x}^{\mathrm{2}} \right)^{{n}} =? \\ $$

Question Number 188430    Answers: 0   Comments: 0

2⌊ x ⌋ − ⌊ −x ⌋ =4 −−−− if x∈Z ⇒ 2x +x = 4 ⇒ x=(4/3) ,impossible if x∉ Z ⇒^(⌊−x⌋=−⌊x⌋−1) 2⌊x⌋+⌊x⌋=3 ⇒ ⌊ x ⌋= 1 ⇒ 1≤ x < 2 ⇒^(x≠1) x∈ (1 , 2) ✓

$$ \\ $$$$\:\:\:\:\mathrm{2}\lfloor\:{x}\:\rfloor\:−\:\lfloor\:−{x}\:\rfloor\:=\mathrm{4} \\ $$$$\:\:\:−−−− \\ $$$$\:\:{if}\:\:{x}\in\mathbb{Z}\:\Rightarrow\:\:\mathrm{2}{x}\:+{x}\:=\:\mathrm{4}\:\Rightarrow\:{x}=\frac{\mathrm{4}}{\mathrm{3}}\:\:,{impossible} \\ $$$$\:\:{if}\:{x}\notin\:\mathbb{Z}\:\overset{\lfloor−{x}\rfloor=−\lfloor{x}\rfloor−\mathrm{1}} {\Rightarrow}\mathrm{2}\lfloor{x}\rfloor+\lfloor{x}\rfloor=\mathrm{3} \\ $$$$\:\:\:\:\:\Rightarrow\:\lfloor\:{x}\:\rfloor=\:\mathrm{1}\:\Rightarrow\:\:\mathrm{1}\leqslant\:{x}\:<\:\mathrm{2}\:\:\:\:\overset{{x}\neq\mathrm{1}} {\Rightarrow}\:{x}\in\:\left(\mathrm{1}\:,\:\mathrm{2}\right)\:\:\:\checkmark \\ $$$$ \\ $$

Question Number 188407    Answers: 3   Comments: 0

xf(x) = f(x + 2) f(2) = 2 f(8) = ?

$${xf}\left({x}\right)\:=\:{f}\left({x}\:+\:\mathrm{2}\right) \\ $$$${f}\left(\mathrm{2}\right)\:=\:\mathrm{2} \\ $$$${f}\left(\mathrm{8}\right)\:=\:?\: \\ $$

Question Number 188379    Answers: 0   Comments: 0

Question Number 189462    Answers: 0   Comments: 0

Question Number 188366    Answers: 1   Comments: 0

xlnx=7 x?

$${xlnx}=\mathrm{7}\:\:\:\:\: \\ $$$${x}? \\ $$

  Pg 80      Pg 81      Pg 82      Pg 83      Pg 84      Pg 85      Pg 86      Pg 87      Pg 88      Pg 89   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com