Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 85

Question Number 188126    Answers: 0   Comments: 0

In convex polygon ABCD AB = 10 (√6) , CD = 18 ∠ ABD = 60° , ∠ BDC = 45° and BD = 13 (√6) + 9 (√2) find AC = ?

$$\mathrm{In}\:\mathrm{convex}\:\mathrm{polygon}\:\:\mathrm{ABCD} \\ $$$$\mathrm{AB}\:=\:\mathrm{10}\:\sqrt{\mathrm{6}}\:\:,\:\:\mathrm{CD}\:=\:\mathrm{18} \\ $$$$\angle\:\mathrm{ABD}\:=\:\mathrm{60}°\:\:,\:\:\angle\:\mathrm{BDC}\:=\:\mathrm{45}° \\ $$$$\mathrm{and}\:\:\mathrm{BD}\:=\:\mathrm{13}\:\sqrt{\mathrm{6}}\:+\:\mathrm{9}\:\sqrt{\mathrm{2}} \\ $$$$\mathrm{find}\:\:\mathrm{AC}\:=\:? \\ $$

Question Number 188100    Answers: 2   Comments: 0

Question Number 188082    Answers: 1   Comments: 0

P(x) is a polynomial If P(x^2 + 1) = 6x^4 − x^2 + 5 Find P(x^2 − 1) = ?

$$\mathrm{P}\left(\mathrm{x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial} \\ $$$$\mathrm{If}\:\:\:\mathrm{P}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:=\:\mathrm{6x}^{\mathrm{4}} \:−\:\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{5} \\ $$$$\mathrm{Find}\:\:\:\mathrm{P}\left(\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{1}\right)\:=\:? \\ $$

Question Number 188073    Answers: 2   Comments: 0

If x = (√((1 + (√5))/( (√5) − 1))) find 5x^2 −5x−1=?

$$\mathrm{If}\:\:\:\mathrm{x}\:=\:\sqrt{\frac{\mathrm{1}\:+\:\sqrt{\mathrm{5}}}{\:\sqrt{\mathrm{5}}\:−\:\mathrm{1}}}\:\:\:\:\:\mathrm{find}\:\:\:\:\mathrm{5x}^{\mathrm{2}} −\mathrm{5x}−\mathrm{1}=? \\ $$

Question Number 188072    Answers: 0   Comments: 0

If x_1 =−1 and x_(n+1) = (1 + (2/n))x_n + (4/n) Find x_(2023) = ?

$$\mathrm{If}\:\:\:\mathrm{x}_{\mathrm{1}} =−\mathrm{1}\:\:\:\mathrm{and}\:\:\:\mathrm{x}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} =\:\left(\mathrm{1}\:+\:\frac{\mathrm{2}}{\mathrm{n}}\right)\mathrm{x}_{\boldsymbol{\mathrm{n}}} +\:\frac{\mathrm{4}}{\mathrm{n}} \\ $$$$\mathrm{Find}\:\:\:\:\:\mathrm{x}_{\mathrm{2023}} \:=\:? \\ $$

Question Number 188071    Answers: 0   Comments: 1

If ((sin^4 x)/5) + ((cos^4 x)/7) = (1/(12)) Find ((sin^2 2x)/5) + ((cos^2 2x)/7) = ?

$$\mathrm{If}\:\:\:\:\:\frac{\mathrm{sin}^{\mathrm{4}} \mathrm{x}}{\mathrm{5}}\:+\:\frac{\mathrm{cos}^{\mathrm{4}} \mathrm{x}}{\mathrm{7}}\:=\:\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\mathrm{Find}\:\:\:\:\:\frac{\mathrm{sin}^{\mathrm{2}} \:\mathrm{2x}}{\mathrm{5}}\:+\:\frac{\mathrm{cos}^{\mathrm{2}} \:\mathrm{2x}}{\mathrm{7}}\:=\:? \\ $$

Question Number 188069    Answers: 0   Comments: 1

how is solution ∫(√e^x )ln (√e^x )dx=?

$${how}\:{is}\:{solution} \\ $$$$\int\sqrt{{e}^{{x}} }\mathrm{ln}\:\sqrt{{e}^{{x}} }{dx}=? \\ $$

Question Number 188016    Answers: 1   Comments: 0

Question Number 187998    Answers: 1   Comments: 0

Question Number 187989    Answers: 2   Comments: 0

Question Number 187980    Answers: 1   Comments: 0

Question Number 187971    Answers: 2   Comments: 0

If , x^( 5) = 1 ∧ x≠1 ( (( 1)/(x^( 2) −x +1)) + (1/(x^( 2) + x +1)) )^( 10) = ?

$$ \\ $$$$\:\:\mathrm{If}\:\:\:,\:\:{x}^{\:\mathrm{5}} \:=\:\mathrm{1}\:\:\:\wedge\:\:{x}\neq\mathrm{1} \\ $$$$ \\ $$$$\:\:\:\:\left(\:\frac{\:\mathrm{1}}{{x}^{\:\mathrm{2}} \:−{x}\:+\mathrm{1}}\:+\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} \:+\:{x}\:+\mathrm{1}}\:\right)^{\:\mathrm{10}} =\:? \\ $$$$ \\ $$

Question Number 187916    Answers: 1   Comments: 0

how is solution y=(cosx)^((3x^2 −1)^e^x ) (dy/dx)=?

$${how}\:{is}\:{solution} \\ $$$${y}=\left({cosx}\right)^{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } } \\ $$$$\frac{{dy}}{{dx}}=? \\ $$

Question Number 187908    Answers: 0   Comments: 0

Question Number 187905    Answers: 0   Comments: 1

Question Number 187877    Answers: 2   Comments: 0

Simplify completely ((256^(−(7/(16))) × 128^(9/(28)) )/(512^((17)/(36)) × 64^(−((11)/(12))) ))

$$\mathrm{Simplify}\:\mathrm{completely} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{256}^{−\frac{\mathrm{7}}{\mathrm{16}}} \:×\:\mathrm{128}^{\frac{\mathrm{9}}{\mathrm{28}}} }{\mathrm{512}^{\frac{\mathrm{17}}{\mathrm{36}}} \:×\:\mathrm{64}^{−\frac{\mathrm{11}}{\mathrm{12}}} } \\ $$

Question Number 187874    Answers: 2   Comments: 0

how is solution ((√2)−1)^(13) =x ((√2)+1)^(221) =? 1)x^(−16) 2)x^(−17) 3)x^(221) 4)x^(21)

$${how}\:{is}\:{solution} \\ $$$$\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{13}} =\mathrm{x}\:\:\:\:\:\:\:\:\:\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{221}} =? \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{x}^{−\mathrm{16}} \left.\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{x}^{−\mathrm{17}} \:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{x}^{\mathrm{221}} \:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\right)\mathrm{x}^{\mathrm{21}} \\ $$

Question Number 187871    Answers: 1   Comments: 0

how is solution sgn(cos((21)/(10)))=?

$${how}\:{is}\:{solution} \\ $$$$\mathrm{sgn}\left(\mathrm{cos}\frac{\mathrm{21}}{\mathrm{10}}\right)=? \\ $$

Question Number 187856    Answers: 1   Comments: 0

find x 2^(√x) =8x

$${find}\:{x} \\ $$$$\mathrm{2}^{\sqrt{{x}}} =\mathrm{8}{x} \\ $$

Question Number 187951    Answers: 3   Comments: 0

please help me to solve 6x^2 +x−2=0

$${please}\:{help}\:{me}\:{to}\:{solve} \\ $$$$\mathrm{6}{x}^{\mathrm{2}} +{x}−\mathrm{2}=\mathrm{0} \\ $$

Question Number 187811    Answers: 1   Comments: 0

Question Number 187780    Answers: 1   Comments: 0

solve ⌊ (1/(4 )) + 2^( x) ⌋ + ⌊ (1/2) + 2^( x+1) ⌋=1

$$ \\ $$$$\:\:{solve} \\ $$$$\:\:\:\:\lfloor\:\:\frac{\mathrm{1}}{\mathrm{4}\:}\:+\:\mathrm{2}^{\:{x}} \:\rfloor\:+\:\lfloor\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\mathrm{2}^{\:{x}+\mathrm{1}} \:\rfloor=\mathrm{1} \\ $$$$ \\ $$

Question Number 187731    Answers: 4   Comments: 0

Question Number 187695    Answers: 2   Comments: 0

If , f( x )= (( sin_ (cos (x) ))/( ^ (√( (π/x))))) ⇒ f ′ ((( π)/2) ) = ?

$$ \\ $$$$\:\:\:{If}\:,\:\:{f}\left(\:{x}\:\right)=\:\frac{\:\:{si}\underset{} {{n}}\:\left({cos}\:\left({x}\right)\:\right)}{\overset{} {\:}\sqrt{\:\frac{\pi}{{x}}}} \\ $$$$\:\:\:\:\Rightarrow\:\:\:{f}\:'\:\left(\frac{\:\pi}{\mathrm{2}}\:\right)\:=\:? \\ $$

Question Number 187690    Answers: 0   Comments: 0

Question Number 187595    Answers: 1   Comments: 1

  Pg 80      Pg 81      Pg 82      Pg 83      Pg 84      Pg 85      Pg 86      Pg 87      Pg 88      Pg 89   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com