Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 79
Question Number 189937 Answers: 0 Comments: 0
Question Number 189919 Answers: 1 Comments: 0
$$\:{If}\:{x},{y}\:{are}\:{real}\:{numbers}\:{satisfy} \\ $$$$\:\frac{{x}+\mathrm{40}}{{y}}+\frac{\mathrm{569}}{{xy}}=\frac{\mathrm{26}−{y}}{{x}}\:,\:{then}\:{xy}=? \\ $$
Question Number 189916 Answers: 2 Comments: 0
$$\mathrm{when}\:\:\:\:\mathrm{sinx}×\mathrm{cosx}=−\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\mathrm{find}\:\:\:\:\:\:\:\mathrm{sinx}+\mathrm{cosx}=? \\ $$
Question Number 189886 Answers: 0 Comments: 0
$$ \\ $$$$\:\:{e}^{\:{x}} \:>\:\mathrm{1}+\:{x}\:\:\:\:\left(\forall\:{x}\:>\mathrm{0}\:\right) \\ $$$$\:\:\:{set}:\:{x}=\sqrt{\frac{\pi}{{e}}}\:−\mathrm{1} \\ $$$$\:\:\:\:{e}^{\:\frac{\sqrt{\pi}}{\:\sqrt{{e}}}\:−\mathrm{1}} >\:\frac{\sqrt{\pi}}{\:\sqrt{{e}}}\:\Rightarrow\:{e}^{\:\frac{\sqrt{\pi}}{\:\sqrt{{e}}}} \:>\:\sqrt{\pi}\: \\ $$$$\:\:\:\:\:\:\left(\:{e}^{\:\frac{\sqrt{\pi}}{\:\sqrt{{e}}}} \right)^{\:\sqrt{{e}}} >\:\sqrt{\pi}\:^{\:\sqrt{{e}}} \:\Rightarrow\:{e}^{\:\sqrt{\pi}} \:>\:\sqrt{\pi\:}\:^{\:\sqrt{{e}}} \\ $$$$ \\ $$
Question Number 189859 Answers: 0 Comments: 0
Question Number 189858 Answers: 1 Comments: 0
Question Number 189838 Answers: 0 Comments: 0
Question Number 189826 Answers: 0 Comments: 0
Question Number 189823 Answers: 0 Comments: 0
$$\mathrm{If}:\:\:\:\mathrm{x}_{\mathrm{0}} \:=\:\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{x}_{\boldsymbol{\mathrm{n}}+\mathrm{1}} \:=\:\sqrt{\mathrm{x}_{\boldsymbol{\mathrm{n}}} ^{\mathrm{2}} \:+\:\mathrm{x}_{\boldsymbol{\mathrm{n}}} } \\ $$$$\mathrm{Find}:\:\:\:\Omega\:=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{x}_{\boldsymbol{\mathrm{n}}} -\:\frac{\mathrm{n}}{\mathrm{2}}\:+\:\frac{\mathrm{1}}{\mathrm{8}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}−\mathrm{1}} {\sum}}\:\frac{\mathrm{1}}{\mathrm{x}_{\boldsymbol{\mathrm{k}}} }\right) \\ $$
Question Number 189803 Answers: 3 Comments: 0
$$ \\ $$$${what}'{s}\:{the}\:{minimum}\:{value}\:{of} \\ $$$${a}+\frac{\mathrm{1}}{{b}\left({a}−{b}\right)}\:{where}\:{a}>{b}>\mathrm{0}\:{a},{b}\in\mathbb{R} \\ $$$$ \\ $$
Question Number 189763 Answers: 0 Comments: 0
Question Number 189757 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\frac{\boldsymbol{\pi}}{\mathrm{2}}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}}\:\mid\:\mathrm{sin}\:\mathrm{4x}\:\mid}{\:\sqrt{\mathrm{1}\:−\:\mathrm{cos}\:\mathrm{4x}}}\:\:\:=\:\:\:? \\ $$$$\mathrm{Find}:\:\:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\boldsymbol{\pi}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{2}}\:\mid\:\mathrm{sin}\:\mathrm{6x}\:\mid}{\:\sqrt{\mathrm{1}\:−\:\mathrm{cos}\:\mathrm{6x}}}\:\:\:=\:\:\:? \\ $$
Question Number 189748 Answers: 2 Comments: 2
$$ \\ $$$$\:\:\:\:\:\boldsymbol{{x}}−\sqrt{\boldsymbol{{x}}}+\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\boldsymbol{{x}}=?? \\ $$
Question Number 189610 Answers: 1 Comments: 0
$${solve}\:{for}\:{x}\:{if}\:\:\: \\ $$$$\mathrm{log}\:{x}=\frac{{x}^{\mathrm{2}} }{\mathrm{25}} \\ $$
Question Number 189593 Answers: 0 Comments: 0
Question Number 189592 Answers: 0 Comments: 0
Question Number 189598 Answers: 0 Comments: 0
Question Number 189576 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\mathrm{2}^{\boldsymbol{{x}}} \:+\:\mathrm{2}^{\boldsymbol{{x}}} −\mathrm{4}\:+\:\boldsymbol{{x}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\boldsymbol{{x}}\:=\:??? \\ $$$$ \\ $$
Question Number 189564 Answers: 1 Comments: 0
Question Number 189555 Answers: 0 Comments: 0
Question Number 189554 Answers: 0 Comments: 0
Question Number 189533 Answers: 1 Comments: 0
$${when}\:\:{a}+{b}=\mathrm{60}^{°} \:\:\:\:\:{find}\:\:\frac{{cos}^{\mathrm{2}} {a}−{sin}^{\mathrm{2}} {b}}{{cos}\left({a}−{b}\right)}=? \\ $$
Question Number 189531 Answers: 1 Comments: 0
$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{natural} \\ $$$$\mathrm{numbers}\:\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{satisfy} \\ $$$$\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} \mathrm{y}+\mathrm{gcd}\left(\mathrm{x},\mathrm{y}^{\mathrm{2}} \right)=\mathrm{2023} \\ $$
Question Number 189514 Answers: 0 Comments: 0
Question Number 189507 Answers: 0 Comments: 0
Question Number 189473 Answers: 1 Comments: 0
Pg 74 Pg 75 Pg 76 Pg 77 Pg 78 Pg 79 Pg 80 Pg 81 Pg 82 Pg 83
Terms of Service
Privacy Policy
Contact: info@tinkutara.com