Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 79
Question Number 190882 Answers: 1 Comments: 2
Question Number 190820 Answers: 1 Comments: 0
Question Number 190802 Answers: 1 Comments: 0
$${log}_{{x}} {x}={x}^{\mathrm{5}{x}−\mathrm{10}} \:\:\:\:\:{x}=? \\ $$
Question Number 190784 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\mathrm{If}\:,\:\mathrm{0}\:\dashrightarrow\:\mathrm{M}'\:\overset{{f}} {\dashrightarrow}\mathrm{M}\overset{{g}} {\dashrightarrow}\mathrm{M}''\dashrightarrow\mathrm{0}\:\mathrm{is} \\ $$$$\:\:\:\:\mathrm{a}\:\mathrm{short}\:\mathrm{exact}\:\mathrm{sequence}\:\:\mathrm{and}\:\:\mathrm{M}'\:,\:\mathrm{M}''\:\mathrm{are} \\ $$$$\:\:\:\mathrm{two}\:\:\mathrm{finitely}\:\mathrm{generated}\:\:\mathrm{R}\:−\mathrm{modules} \\ $$$$\:\:\:\mathrm{then}\:\:\mathrm{prove}\:\:\:\mathrm{M}\:\:\mathrm{is}\:\:\mathrm{finitely}\:\mathrm{generated}.\: \\ $$$$\:\:\:\mathrm{Hint}:\:\:{f}\:\:,\:\:{g}\:\:\:{are}\:\:{two}\:\:\:{R}\:−\:{homomorphism}. \\ $$
Question Number 190774 Answers: 0 Comments: 0
Question Number 190765 Answers: 1 Comments: 0
Question Number 190746 Answers: 2 Comments: 0
Question Number 190705 Answers: 1 Comments: 0
Question Number 190704 Answers: 1 Comments: 0
$${f}\left({x}+{y}\right)={f}\left({x}\right)+{f}\left({y}\right)+{x}\centerdot{y} \\ $$$${f}\left(\mathrm{4}\right)=\mathrm{10}\:\:{finde}\:{f}\left(\mathrm{2022}\right)=? \\ $$
Question Number 190677 Answers: 0 Comments: 0
$$\mathrm{If}\:\:\mathrm{x}\:\in\:\mathbb{R} \\ $$$$\:\:\:\:\:\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,\mathrm{a}_{\mathrm{3}} \:,\:\mathrm{b}_{\mathrm{1}} ,\mathrm{b}_{\mathrm{2}} ,\mathrm{b}_{\mathrm{3}} \:>\:\mathrm{0} \\ $$$$\mathrm{Then}\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\mathrm{a}_{\mathrm{1}} ^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{b}_{\mathrm{1}} ^{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:+\:\mathrm{a}_{\mathrm{2}} ^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{b}_{\mathrm{2}} ^{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:+\:\mathrm{a}_{\mathrm{3}} ^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\mathrm{b}_{\mathrm{3}} ^{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\leqslant \\ $$$$\leqslant\:\left(\mathrm{a}_{\mathrm{1}} +\:\mathrm{a}_{\mathrm{2}} +\:\mathrm{a}_{\mathrm{3}} \right)^{\boldsymbol{\mathrm{sin}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:\left(\mathrm{b}_{\mathrm{1}} +\:\mathrm{b}_{\mathrm{2}} +\:\mathrm{b}_{\mathrm{3}} \right)^{\boldsymbol{\mathrm{cos}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \\ $$
Question Number 190659 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\frac{\pi}{\mathrm{9}}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{9}}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{cos}\:\frac{\mathrm{4}\pi}{\mathrm{9}}} \\ $$$$=\:\sqrt[{\mathrm{3}}]{\mathrm{3}\:−\:\frac{\mathrm{3}}{\mathrm{2}}\:\sqrt[{\mathrm{3}}]{\mathrm{9}}}\: \\ $$
Question Number 190625 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{solve}\:\mathrm{in}\:\:\:\mathbb{R}\:\:\:: \\ $$$$\:\:\:\:\:\:\:\:\lfloor\:\frac{\mathrm{1}}{{x}}\:\rfloor\:\:+\:\lfloor\:{x}\:\rfloor\:=\:\mathrm{2}\:\:\:\:\: \\ $$$$ \\ $$
Question Number 190611 Answers: 0 Comments: 2
$$\mathrm{Montrer}\:\mathrm{que}: \\ $$$$\mathrm{1}\bullet\boldsymbol{\mathrm{c}}^{\mathrm{2}} =\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} \\ $$$$\mathrm{2}\bullet\:\mathrm{rayon}\:\:\:\:\:\boldsymbol{\mathrm{r}}=\frac{\boldsymbol{\mathrm{c}}}{\mathrm{1}+\sqrt{\mathrm{2}}}−\frac{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}}{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$$$ \\ $$
Question Number 190607 Answers: 0 Comments: 0
Question Number 190536 Answers: 1 Comments: 0
$$\:\mathrm{If}\:\mathrm{p},\mathrm{q}\:\mathrm{and}\:\mathrm{r}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\:\mathrm{of}\:\sqrt[{\mathrm{3}}]{\mathrm{3p}−\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{3q}−\mathrm{2}}+\sqrt[{\mathrm{3}}]{\mathrm{3r}−\mathrm{2}}\: \\ $$
Question Number 190523 Answers: 1 Comments: 0
Question Number 190522 Answers: 1 Comments: 0
Question Number 190520 Answers: 2 Comments: 0
$${if}\:{a},{b}\:{and}\:{c}\:{root}\:{of}\:{the} \\ $$$${x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} −\mathrm{57}{x}+\mathrm{1}=\mathrm{0} \\ $$$${thi}\:{find}\:{thd}\:{volue}\:{of} \\ $$$${a}^{\frac{\mathrm{1}}{\mathrm{5}}} +{b}^{\frac{\mathrm{1}}{\mathrm{5}}} +{c}^{\frac{\mathrm{1}}{\mathrm{5}}} =? \\ $$
Question Number 190448 Answers: 1 Comments: 0
Question Number 190435 Answers: 2 Comments: 0
$$ \\ $$$$\mathrm{how}\:\mathrm{is}\:\mathrm{solution} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{10}} \centerdot\mathrm{sin}^{\mathrm{4}} \mathrm{x}\centerdot\mathrm{cos}^{\mathrm{8}} \mathrm{x}\centerdot\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{x}^{\mathrm{4}} +\mathrm{3x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{x}}=? \\ $$$$ \\ $$
Question Number 190407 Answers: 2 Comments: 0
Question Number 190392 Answers: 1 Comments: 1
$$\mathrm{If}\:\:\:\mathrm{a}\:+\:\mathrm{b}\:=\:\mathrm{3} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{2a}\:−\:\mathrm{2b}}{\mathrm{a}^{\mathrm{2}} \:−\:\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{4a}\:+\:\mathrm{4}} \\ $$
Question Number 190357 Answers: 0 Comments: 1
Question Number 190325 Answers: 1 Comments: 0
Question Number 190324 Answers: 1 Comments: 1
Question Number 190321 Answers: 0 Comments: 1
$${What}\:{is}\:{the}\:{length}\:\:\boldsymbol{{x}}\:\:{of}\:{triangle} \\ $$$${equilateral}\:{A}^{'} {B}'{C}',{such}\:{that} \\ $$$${Area}\left({triangle}\:{ABC}\right)={Area}\left({triangle}\:{A}'{B}^{'} {C}'\right) \\ $$$$ \\ $$
Pg 74 Pg 75 Pg 76 Pg 77 Pg 78 Pg 79 Pg 80 Pg 81 Pg 82 Pg 83
Terms of Service
Privacy Policy
Contact: info@tinkutara.com