Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 75
Question Number 192697 Answers: 1 Comments: 0
$$\:\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\left(\mathrm{9x}−\frac{\mathrm{1}}{\mathrm{100}}\mathrm{x}\right)^{\mathrm{3}} \left(\mathrm{9x}−\frac{\mathrm{2}}{\mathrm{100}}\mathrm{x}\right)^{\mathrm{3}} \left(\mathrm{9x}−\frac{\mathrm{3}}{\mathrm{100}}\mathrm{x}\right)^{\mathrm{3}} ...\left(\mathrm{9x}−\frac{\mathrm{2013}}{\mathrm{100}}\mathrm{x}\right)^{\mathrm{3}} . \\ $$
Question Number 192688 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:: \\ $$$$\mathrm{C}_{\mathrm{n}} ^{\mathrm{k}} \:=\:\frac{\mathrm{1}}{\mathrm{2}\pi}\:\underset{\:−\pi} {\int}^{\:\:\:\pi} \left(\mathrm{2cos}\frac{\theta}{\mathrm{2}}\right)^{\mathrm{n}} \mathrm{cos}\left[\left(\frac{\mathrm{n}}{\mathrm{2}}−\mathrm{k}\right)\theta\right]\mathrm{d}\theta \\ $$
Question Number 192676 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$$$\mathrm{1}.\:\:\mathrm{lg}\left(\mathrm{5x}^{\mathrm{2}} \:−\:\mathrm{6}\right)\centerdot\mathrm{lg}\left(\mathrm{5x}\:−\:\mathrm{6}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{2}.\:\:\left(\mathrm{2x}\:−\:\mathrm{5}\right)\centerdot\mathrm{log}_{\mathrm{3}} \left(\mathrm{1},\mathrm{5}\:−\:\mathrm{x}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{3}.\:\:\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{14}\centerdot\mathrm{2}^{\boldsymbol{\mathrm{x}}} \:−\:\mathrm{32}\:=\:\mathrm{0} \\ $$
Question Number 192675 Answers: 1 Comments: 0
Question Number 192661 Answers: 1 Comments: 2
Question Number 192630 Answers: 0 Comments: 0
$${z}={xy}−\mathrm{5}{x}+\mathrm{2}{y}.\:{find}\:\frac{{dz}}{{dx}}\:{and}\:\frac{{dz}}{{dy}}\:{at}\left(\mathrm{2},\mathrm{4}\right) \\ $$
Question Number 192629 Answers: 0 Comments: 0
$${Z}={f}\left({x}_{\mathrm{1},} {x}_{\mathrm{2},} {x}_{\mathrm{3}} \right)={x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{1}} ^{\mathrm{5}} −{x}_{\mathrm{2}} ^{\mathrm{2}} {x}_{\mathrm{3}} \:{find}\:{f}_{\mathrm{1}} ,{f}_{\mathrm{11}} ,{and}\:{f}_{\mathrm{21}} \\ $$
Question Number 192625 Answers: 3 Comments: 1
$${lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}^{\mathrm{4}} \left(\pi{cos}\left({x}\right)\right)}{\mathrm{1}−{cos}\left(\mathrm{1}−{cos}\left(\mathrm{1}−{cos}\left({x}\right)\right)\right)} \\ $$
Question Number 192596 Answers: 2 Comments: 0
Question Number 192594 Answers: 0 Comments: 0
Question Number 192542 Answers: 2 Comments: 0
Question Number 192508 Answers: 1 Comments: 1
Question Number 192481 Answers: 1 Comments: 0
Question Number 192477 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\:\:\frac{\frac{\mathrm{25}}{\mathrm{42}}\:−\:\frac{\mathrm{5}}{\mathrm{16}}\:+\:\frac{\mathrm{10}}{\mathrm{9}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}}{\frac{\mathrm{3}}{\mathrm{8}}\:+\:\frac{\mathrm{4}}{\mathrm{5}}\:−\:\frac{\mathrm{5}}{\mathrm{7}}\:−\:\frac{\mathrm{4}}{\mathrm{3}}}\:=\:? \\ $$
Question Number 192463 Answers: 3 Comments: 0
Question Number 192440 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{Given}\:\begin{cases}{\mathrm{A}=\frac{\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{pq}\right)^{\mathrm{2}} +\left(\mathrm{pr}\right)^{\mathrm{2}} +\left(\mathrm{qr}\right)^{\mathrm{2}} }}\\{\mathrm{B}=\frac{\mathrm{q}^{\mathrm{2}} −\mathrm{pr}}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} }\:}\end{cases}\:\:\:\:\:\: \\ $$$$\:\mathrm{If}\:\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{0}\:\mathrm{then}\:\mathrm{A}^{\mathrm{2}} −\mathrm{4B}=? \\ $$$$ \\ $$
Question Number 192437 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:=\:\frac{\mathrm{1}}{{a}\:+\:{b}\:+\:{c}}\:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{5}} }\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{5}} }\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{5}} }\:=\:\frac{\mathrm{1}}{{a}^{\mathrm{5}} \:+\:{b}^{\mathrm{5}} \:+\:{c}^{\mathrm{5}} }\:=\:\frac{\mathrm{1}}{\left({a}\:+\:{b}\:+\:{c}\right)^{\mathrm{5}} } \\ $$
Question Number 192425 Answers: 1 Comments: 0
$${Question} \\ $$$${if}\:\:``{k}''\:{is}\:{odd}\:\:\&\:{A}=\mathrm{1}^{{k}} +\mathrm{2}^{{k}} +...+{n}^{{k}\:\:} \:\&\:\:{B}=\mathrm{1}+\mathrm{2}+...+{n} \\ $$$${prove}\:{that}\:\::\:\:{B}\:\mid\:{A}\: \\ $$
Question Number 192409 Answers: 1 Comments: 0
Question Number 192399 Answers: 1 Comments: 1
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Algebra}\:\left(\mathrm{1}\:\right) \\ $$$$\:\:{G},\:{is}\:{a}\:{group}\:\:{and}\:\:\:{o}\left({G}\:\right)\:=\:{p}^{\:\mathrm{2}} \:. \\ $$$$\:\:\:{prove}\:{that}\:{G}\:{is}\:{an}\:{abelian}\:{group}. \\ $$$$\:\:\:{hint}:\:\:\left(\:{p}\:{is}\:{prime}\:{number}\:\:\right) \\ $$$$\:\:\:\:\:−−−−−−−−−−−−− \\ $$
Question Number 192387 Answers: 1 Comments: 0
$$\:\mathrm{Simplify}\: \\ $$$$\:\sqrt{\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{4}+\left(\frac{\mathrm{2017}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2017}^{\mathrm{2}} }\right)^{\mathrm{2}} }\right)}\: \\ $$$$\:\mathrm{is}\:....\: \\ $$
Question Number 192374 Answers: 3 Comments: 1
$${why}\:\:\:``\:\mathrm{200}!<\mathrm{100}^{\mathrm{200}} \:''\:? \\ $$
Question Number 192370 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\:\:\mathrm{x}^{\mathrm{4}} \:\:−\:\:\mathrm{2x}^{\mathrm{3}} \:\:+\:\:\mathrm{4x}^{\mathrm{2}} \:\:+\:\:\mathrm{6x}\:\:\:−\:\:\mathrm{21}\:\:\:=\:\:\:\mathrm{0},\:\: \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{of}\:\mathrm{its}\:\mathrm{roots}\:\mathrm{is}\:\mathrm{zero} \\ $$
Question Number 192363 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}_{{i}} −{x}+\left(\mathrm{2}{cx}−{cb}\right)\left({y}_{{i}} +{cx}^{\mathrm{2}} −{cbx}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{this}\:\mathrm{equaition} \\ $$$$\left.{i}\right)\mathrm{c}>\mathrm{0} \\ $$$$\left.{ii}\right)\mathrm{b}>\mathrm{0} \\ $$$$\left.{iii}\right)\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{real}\:\mathrm{solution} \\ $$
Question Number 192330 Answers: 0 Comments: 0
Question Number 192350 Answers: 2 Comments: 0
Pg 70 Pg 71 Pg 72 Pg 73 Pg 74 Pg 75 Pg 76 Pg 77 Pg 78 Pg 79
Terms of Service
Privacy Policy
Contact: info@tinkutara.com