Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 71
Question Number 191663 Answers: 4 Comments: 0
$$\mathrm{2}^{{a}} +\mathrm{4}^{{b}} +\mathrm{8}^{{c}} =\mathrm{328} \\ $$$${find}\:{a},{b}\:{and}\:{c} \\ $$$${when}\left({a},{b},{c}\right){is}\:{natual}\:{number} \\ $$
Question Number 191632 Answers: 0 Comments: 1
$$\int_{\mathrm{0}} ^{\infty} \sqrt{\mathrm{tan}\:\theta}\:{d}\theta \\ $$
Question Number 191631 Answers: 1 Comments: 0
$$\int_{\mathrm{0}} ^{\infty} {x}^{\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}^{\mathrm{2}} } {dx} \\ $$
Question Number 191624 Answers: 1 Comments: 0
Question Number 191623 Answers: 2 Comments: 0
Question Number 191615 Answers: 1 Comments: 0
$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{that}, \\ $$$$\frac{{a}}{{a}^{\mathrm{2}} \:−\:{bc}}\:+\:\frac{{b}}{{b}^{\mathrm{2}} \:−\:{ca}}\:+\:\frac{{c}}{{c}^{\mathrm{2}} \:−\:{ab}}\:=\:\mathrm{0}. \\ $$
Question Number 191614 Answers: 0 Comments: 1
$$\frac{\alpha^{\mathrm{100}} +\beta^{\mathrm{100}} }{\alpha^{\mathrm{100}} −\beta^{\mathrm{100}} }\:=\: \\ $$$$\frac{\left(−{w}\right)^{\mathrm{100}} +\left(−{w}^{\mathrm{2}} \right)^{\mathrm{100}} }{\left(−{w}\right)^{\mathrm{100}} −\left(−{w}^{\mathrm{2}} \right)^{\mathrm{100}} } \\ $$$$=\:\frac{{w}^{\mathrm{100}} +{w}^{\mathrm{200}} }{{w}^{\mathrm{100}} −{w}^{\mathrm{200}} } \\ $$$$=\:\frac{\mathrm{1}+{w}^{\mathrm{100}} }{\mathrm{1}−{w}^{\mathrm{100}\:} } \\ $$$$=\:\frac{\mathrm{1}+{w}}{\mathrm{1}−{w}}\:=\:\frac{\mathrm{2}}{\mathrm{2}{w}}\:=\:\frac{\mathrm{1}}{{w}}\:=\: \\ $$
Question Number 191610 Answers: 1 Comments: 0
$${Q}:\:{if}\:\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{2}{cos}\left(\theta\right)\:\:{prove}\:{it}\:\:{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=\mathrm{2}{cos}\left({n}\theta\right) \\ $$
Question Number 191589 Answers: 1 Comments: 1
$${a}^{{x}} \:=\:{bc},\:{b}^{{y}} \:=\:{ca},\:{c}^{{z}} \:=\:{ab}. \\ $$$$\mathrm{Prove}\:\mathrm{that},\:\frac{{x}}{\mathrm{1}\:+\:{x}}\:+\:\frac{{y}}{\mathrm{1}\:+\:{y}}\:+\:\frac{{z}}{\mathrm{1}\:+\:{z}}\:=\:\mathrm{2}. \\ $$$$\left(\mathrm{Without}\:\mathrm{using}\:\mathrm{log}\right) \\ $$$${a}\:\neq\:{b}\:\neq\:{c} \\ $$
Question Number 191569 Answers: 0 Comments: 0
Question Number 191555 Answers: 0 Comments: 1
$$\mathrm{Solve} \\ $$$$\sqrt{{x}}\:+\:{y}\:=\:\mathrm{11} \\ $$$${x}\:+\:\sqrt{{y}}\:=\:\mathrm{7} \\ $$
Question Number 191553 Answers: 4 Comments: 1
$$\mathrm{If}\:{a}^{\mathrm{2}} \:+\:{a}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:{a}^{\mathrm{5}} \:+\:{a}^{\mathrm{4}} \:+\:\mathrm{1}. \\ $$
Question Number 191552 Answers: 2 Comments: 0
$$\mathrm{If}\:{x}^{\mathrm{2}} \:−\:\mathrm{3}{x}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\left({x}^{\mathrm{2}} \:+\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$
Question Number 191546 Answers: 1 Comments: 0
$$\mathrm{If}\:{m}\:+\:\mathrm{1}\:=\:\sqrt{{n}}\:+\:\mathrm{3}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{m}^{\mathrm{3}} \:−\:\mathrm{6}{m}^{\mathrm{2}} \:+\:\mathrm{12}{m}\:−\mathrm{8}}{\:\sqrt{{n}}}\:−\:{n}\right) \\ $$
Question Number 191536 Answers: 2 Comments: 0
$$\mathrm{Factorize} \\ $$$$\frac{\mathrm{2}}{\mathrm{2}{x}\:−\:\mathrm{1}}\:−\mathrm{5}\:+\:\frac{\mathrm{3}}{\mathrm{3}{x}\:−\:\mathrm{1}} \\ $$
Question Number 191530 Answers: 0 Comments: 3
Question Number 191529 Answers: 2 Comments: 0
$$\mathrm{If}\:\frac{{x}\:−\:{y}}{{x}\sqrt{{y}}\:+\:{y}\sqrt{{x}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}}}\:;\:\left({x}\:>\:\mathrm{0}\:\mathrm{and}\:{y}\:>\:\mathrm{0}\right)\:\mathrm{then} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{{x}}{{y}}\:. \\ $$
Question Number 191527 Answers: 2 Comments: 0
$${x}\:+\:{y}\:=\:\mathrm{1}\:\mathrm{and}\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:=\:\mathrm{2}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:{x}^{\mathrm{11}} \:+\:{y}^{\mathrm{11}} . \\ $$
Question Number 191525 Answers: 1 Comments: 0
$${Q}\::\:{Show}\:{that}\:{the}\:{numbers}\:\sqrt{\mathrm{3}\:}\:,\:\mathrm{2}\:\&\:\sqrt{\mathrm{8}}\:{cannot}\:{be}\:{terms}\:{of}\:{an}\:{arithmetic}\:{sequence}. \\ $$
Question Number 191595 Answers: 1 Comments: 0
$${a}\:=\:\frac{{xy}}{{x}\:+\:{y}}\:,\:{b}\:=\:\frac{{xz}}{{x}\:+\:{z}}\:\mathrm{and}\:{c}\:=\:\frac{{yz}}{{y}\:+\:{z}}\:. \\ $$$$\mathrm{Represent}\:{x}\:\mathrm{in}\:{a},\:{b},\:{c}\:\mathrm{form}.\:\left[{x},\:{y},\:{z}\:\neq\:\mathrm{0}\right] \\ $$
Question Number 191512 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{Q}:\:\:\:\:\:\:\:{the}\:{equation}\: \\ $$$$\:\:\:\: \\ $$$$\:\:\:\lfloor\:\mathrm{cos}\left(\mathrm{4}{x}\:\right)\rfloor={m}.\mathrm{cos}\left(\mathrm{2}{x}\right) \\ $$$$\:\:\:{has}\:{no}\:\:{solution}\:.\:\:{x}\in\:\left(\mathrm{0},\:\frac{\pi}{\mathrm{2}}\:\right) \\ $$$$\:\:\:\:{find}\:{the}\:{acceptable} \\ $$$$\:\:\:\:\:\:\:{real}\:{values}\:{for}\:\:\:\:''{m}''. \\ $$
Question Number 191508 Answers: 0 Comments: 0
Question Number 191486 Answers: 1 Comments: 0
$${a}\sqrt{{a}}\:+\:{b}\sqrt{{b}}\:=\:\mathrm{183}\:\mathrm{and}\:{b}\sqrt{{a}}\:+\:{a}\sqrt{{b}}\:=\:\mathrm{182} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\mathrm{9}}{\mathrm{5}}\:\left({a}\:+\:{b}\right)\:? \\ $$
Question Number 191473 Answers: 0 Comments: 0
Question Number 191456 Answers: 0 Comments: 0
Question Number 191454 Answers: 1 Comments: 2
Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71 Pg 72 Pg 73 Pg 74 Pg 75
Terms of Service
Privacy Policy
Contact: info@tinkutara.com