Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 69
Question Number 192661 Answers: 1 Comments: 2
Question Number 192630 Answers: 0 Comments: 0
$${z}={xy}−\mathrm{5}{x}+\mathrm{2}{y}.\:{find}\:\frac{{dz}}{{dx}}\:{and}\:\frac{{dz}}{{dy}}\:{at}\left(\mathrm{2},\mathrm{4}\right) \\ $$
Question Number 192629 Answers: 0 Comments: 0
$${Z}={f}\left({x}_{\mathrm{1},} {x}_{\mathrm{2},} {x}_{\mathrm{3}} \right)={x}_{\mathrm{1}} {x}_{\mathrm{2}} +{x}_{\mathrm{1}} ^{\mathrm{5}} −{x}_{\mathrm{2}} ^{\mathrm{2}} {x}_{\mathrm{3}} \:{find}\:{f}_{\mathrm{1}} ,{f}_{\mathrm{11}} ,{and}\:{f}_{\mathrm{21}} \\ $$
Question Number 192625 Answers: 3 Comments: 1
$${lim}_{{x}\rightarrow\mathrm{0}} \frac{{sin}^{\mathrm{4}} \left(\pi{cos}\left({x}\right)\right)}{\mathrm{1}−{cos}\left(\mathrm{1}−{cos}\left(\mathrm{1}−{cos}\left({x}\right)\right)\right)} \\ $$
Question Number 192596 Answers: 2 Comments: 0
Question Number 192594 Answers: 0 Comments: 0
Question Number 192542 Answers: 2 Comments: 0
Question Number 192508 Answers: 1 Comments: 1
Question Number 192481 Answers: 1 Comments: 0
Question Number 192477 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\:\:\frac{\frac{\mathrm{25}}{\mathrm{42}}\:−\:\frac{\mathrm{5}}{\mathrm{16}}\:+\:\frac{\mathrm{10}}{\mathrm{9}}\:−\:\frac{\mathrm{2}}{\mathrm{3}}}{\frac{\mathrm{3}}{\mathrm{8}}\:+\:\frac{\mathrm{4}}{\mathrm{5}}\:−\:\frac{\mathrm{5}}{\mathrm{7}}\:−\:\frac{\mathrm{4}}{\mathrm{3}}}\:=\:? \\ $$
Question Number 192463 Answers: 3 Comments: 0
Question Number 192440 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{Given}\:\begin{cases}{\mathrm{A}=\frac{\left(\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} \right)^{\mathrm{2}} }{\left(\mathrm{pq}\right)^{\mathrm{2}} +\left(\mathrm{pr}\right)^{\mathrm{2}} +\left(\mathrm{qr}\right)^{\mathrm{2}} }}\\{\mathrm{B}=\frac{\mathrm{q}^{\mathrm{2}} −\mathrm{pr}}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} }\:}\end{cases}\:\:\:\:\:\: \\ $$$$\:\mathrm{If}\:\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{0}\:\mathrm{then}\:\mathrm{A}^{\mathrm{2}} −\mathrm{4B}=? \\ $$$$ \\ $$
Question Number 192437 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{{a}}\:+\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:=\:\frac{\mathrm{1}}{{a}\:+\:{b}\:+\:{c}}\:.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{a}^{\mathrm{5}} }\:+\:\frac{\mathrm{1}}{{b}^{\mathrm{5}} }\:+\:\frac{\mathrm{1}}{{c}^{\mathrm{5}} }\:=\:\frac{\mathrm{1}}{{a}^{\mathrm{5}} \:+\:{b}^{\mathrm{5}} \:+\:{c}^{\mathrm{5}} }\:=\:\frac{\mathrm{1}}{\left({a}\:+\:{b}\:+\:{c}\right)^{\mathrm{5}} } \\ $$
Question Number 192425 Answers: 1 Comments: 0
$${Question} \\ $$$${if}\:\:``{k}''\:{is}\:{odd}\:\:\&\:{A}=\mathrm{1}^{{k}} +\mathrm{2}^{{k}} +...+{n}^{{k}\:\:} \:\&\:\:{B}=\mathrm{1}+\mathrm{2}+...+{n} \\ $$$${prove}\:{that}\:\::\:\:{B}\:\mid\:{A}\: \\ $$
Question Number 192409 Answers: 1 Comments: 0
Question Number 192399 Answers: 1 Comments: 1
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Algebra}\:\left(\mathrm{1}\:\right) \\ $$$$\:\:{G},\:{is}\:{a}\:{group}\:\:{and}\:\:\:{o}\left({G}\:\right)\:=\:{p}^{\:\mathrm{2}} \:. \\ $$$$\:\:\:{prove}\:{that}\:{G}\:{is}\:{an}\:{abelian}\:{group}. \\ $$$$\:\:\:{hint}:\:\:\left(\:{p}\:{is}\:{prime}\:{number}\:\:\right) \\ $$$$\:\:\:\:\:−−−−−−−−−−−−− \\ $$
Question Number 192387 Answers: 1 Comments: 0
$$\:\mathrm{Simplify}\: \\ $$$$\:\sqrt{\mathrm{2}\left(\mathrm{1}+\sqrt{\mathrm{4}+\left(\frac{\mathrm{2017}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2017}^{\mathrm{2}} }\right)^{\mathrm{2}} }\right)}\: \\ $$$$\:\mathrm{is}\:....\: \\ $$
Question Number 192374 Answers: 3 Comments: 1
$${why}\:\:\:``\:\mathrm{200}!<\mathrm{100}^{\mathrm{200}} \:''\:? \\ $$
Question Number 192370 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\:\:\mathrm{x}^{\mathrm{4}} \:\:−\:\:\mathrm{2x}^{\mathrm{3}} \:\:+\:\:\mathrm{4x}^{\mathrm{2}} \:\:+\:\:\mathrm{6x}\:\:\:−\:\:\mathrm{21}\:\:\:=\:\:\:\mathrm{0},\:\: \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{of}\:\mathrm{its}\:\mathrm{roots}\:\mathrm{is}\:\mathrm{zero} \\ $$
Question Number 192363 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}_{{i}} −{x}+\left(\mathrm{2}{cx}−{cb}\right)\left({y}_{{i}} +{cx}^{\mathrm{2}} −{cbx}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{this}\:\mathrm{equaition} \\ $$$$\left.{i}\right)\mathrm{c}>\mathrm{0} \\ $$$$\left.{ii}\right)\mathrm{b}>\mathrm{0} \\ $$$$\left.{iii}\right)\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{real}\:\mathrm{solution} \\ $$
Question Number 192330 Answers: 0 Comments: 0
Question Number 192350 Answers: 2 Comments: 0
Question Number 192186 Answers: 3 Comments: 0
$$\mathrm{If}\:\:\alpha,\:\beta\:\:\mathrm{and}\:\gamma\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\:\:\mathrm{x}^{\mathrm{3}} \:\:+\:\:\mathrm{px}\:\:+\:\:\mathrm{q}\:\:=\:\:\mathrm{0},\:\:\:\:\mathrm{find}\:\:\:\Sigma\alpha^{\mathrm{4}} . \\ $$
Question Number 192171 Answers: 1 Comments: 2
$$\mathrm{2}^{{x}^{{x}^{{x}} } } =\mathrm{2}^{\sqrt{\mathrm{2}}} \\ $$$${x}=? \\ $$
Question Number 192173 Answers: 1 Comments: 0
$${prove}\:{that} \\ $$$$\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{4}} \:=\:\left({x}^{\mathrm{4}} −\mathrm{6}{x}^{\mathrm{2}} {a}^{\mathrm{2}} +{a}^{\mathrm{4}} \right)^{\mathrm{2}} +\left(\mathrm{4}{x}^{\mathrm{3}} {a}−\mathrm{4}{xa}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$
Question Number 192149 Answers: 5 Comments: 0
$$\mathrm{Find}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{2}^{\mathrm{3}} }\:+\:\frac{\mathrm{5}}{\mathrm{2}^{\mathrm{5}} }\:+\:\frac{\mathrm{7}}{\mathrm{2}^{\mathrm{7}} }\:+\:... \\ $$
Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71 Pg 72 Pg 73
Terms of Service
Privacy Policy
Contact: info@tinkutara.com