Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 68

Question Number 193182    Answers: 1   Comments: 0

(x^2 /(2^2 −1^2 ))+(y^2 /(2^2 −3^2 ))+(z^2 /(2^2 −5^2 ))+(w^2 /(2^2 −7^2 ))=1 (x^2 /(4^2 −1^2 ))+(y^2 /(4^2 −3^2 ))+(z^2 /(4^2 −5^2 ))+(w^2 /(4^2 −7^2 ))=1 (x^2 /(6^2 −1^2 ))+(y^2 /(6^2 −3^2 ))+(z^2 /(6^2 −5^2 ))+(w^2 /(6^2 −7^2 ))=1 (x^2 /(8^2 −1^2 ))+(y^2 /(8^2 −3^2 ))+(z^2 /(8^2 −5^2 ))+(w^2 /(8^2 −7^2 ))=1 find (x^2 +y^2 +z^2 +w^2 ).

$$ \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1}\: \\ $$$$ \\ $$$${find}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{w}^{\mathrm{2}} \right). \\ $$

Question Number 193087    Answers: 1   Comments: 0

Question Number 193130    Answers: 3   Comments: 1

Solve for x x^2 −c=(√(c−x))

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{2}} −{c}=\sqrt{{c}−{x}} \\ $$

Question Number 193049    Answers: 0   Comments: 0

Question Number 193045    Answers: 1   Comments: 0

what is the HCF of 8k+1 and 9k ? where k ∈ Z^+

$${what}\:{is}\:{the}\:{HCF}\:{of}\: \\ $$$$\mathrm{8}{k}+\mathrm{1}\:{and}\:\mathrm{9}{k}\:?\:{where}\:{k}\:\in\:\mathbb{Z}^{+} \\ $$

Question Number 193026    Answers: 2   Comments: 0

Question Number 192958    Answers: 4   Comments: 0

Question Number 192957    Answers: 4   Comments: 2

bx^3 =10a^2 bx + 3a^3 y , ay^3 = 10ab^2 y + 3b^3 x solve for x and y in terms of (a , b) and solve for a and b in terms of (x , y )

$$ \\ $$$${bx}^{\mathrm{3}} =\mathrm{10}{a}^{\mathrm{2}} {bx}\:+\:\mathrm{3}{a}^{\mathrm{3}} {y}\:,\:{ay}^{\mathrm{3}} =\:\mathrm{10}{ab}^{\mathrm{2}} {y}\:+\:\mathrm{3}{b}^{\mathrm{3}} {x} \\ $$$${solve}\:{for}\:{x}\:{and}\:{y}\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\right) \\ $$$${and}\:{solve}\:{for}\:{a}\:{and}\:{b}\:{in}\:{terms}\:{of}\:\:\left({x}\:,\:{y}\:\right) \\ $$

Question Number 192942    Answers: 2   Comments: 1

Question Number 192937    Answers: 0   Comments: 0

Question Number 192936    Answers: 2   Comments: 0

Question Number 192928    Answers: 1   Comments: 0

2x^2 −6x+k = 0 where k<0 ((α/β) + (β/α))_(max) = ?

$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+{k}\:=\:\mathrm{0}\:{where}\:{k}<\mathrm{0}\: \\ $$$$\left(\frac{\alpha}{\beta}\:+\:\frac{\beta}{\alpha}\right)_{\mathrm{max}} \:=\:? \\ $$

Question Number 192925    Answers: 1   Comments: 0

Find: x = ? 1. 2^(x+1) + 0,5^(x−2) = 9 2. 4^(3x) = 12 3. 6^(x+2) = 18

$$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$$$\mathrm{1}.\:\mathrm{2}^{\boldsymbol{\mathrm{x}}+\mathrm{1}} \:+\:\mathrm{0},\mathrm{5}^{\boldsymbol{\mathrm{x}}−\mathrm{2}} \:=\:\mathrm{9} \\ $$$$\mathrm{2}.\:\mathrm{4}^{\mathrm{3}\boldsymbol{\mathrm{x}}} \:=\:\mathrm{12} \\ $$$$\mathrm{3}.\:\mathrm{6}^{\boldsymbol{\mathrm{x}}+\mathrm{2}} \:=\:\mathrm{18} \\ $$

Question Number 192924    Answers: 2   Comments: 0

1•determiner: tan (x/2) en fonction de tan x 2•on donne tan x=(1/8) tan (x/2)=? 3• la valeur proche de x?

$$\mathrm{1}\bullet\mathrm{determiner}:\:\mathrm{tan}\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\mathrm{en}\:\mathrm{fonction}\:\mathrm{de}\:\mathrm{tan}\:\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{2}\bullet\mathrm{on}\:\mathrm{donne}\:\:\mathrm{tan}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{8}}\:\:\:\:\mathrm{tan}\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}=? \\ $$$$\mathrm{3}\bullet\:\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{proche}\:\mathrm{de}\:\boldsymbol{\mathrm{x}}? \\ $$

Question Number 192917    Answers: 1   Comments: 0

Question Number 192914    Answers: 1   Comments: 0

x^2 (x^2 −1)=(1−(c/x))^3 +((c/x))^3

$${x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)=\left(\mathrm{1}−\frac{{c}}{{x}}\right)^{\mathrm{3}} +\left(\frac{{c}}{{x}}\right)^{\mathrm{3}} \\ $$

Question Number 192898    Answers: 0   Comments: 1

Solve for x x^3 −7x−2=0

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}−\mathrm{2}=\mathrm{0} \\ $$

Question Number 192883    Answers: 1   Comments: 0

Question Number 192875    Answers: 2   Comments: 0

x^2 −yz=a^n y^2 −zx=b^n z^2 −xy=c^n find (x , y , z) in terms of (a , b , c)

$${x}^{\mathrm{2}} −{yz}={a}^{{n}} \\ $$$${y}^{\mathrm{2}} −{zx}={b}^{{n}} \\ $$$${z}^{\mathrm{2}} −{xy}={c}^{{n}} \\ $$$${find}\:\left({x}\:,\:{y}\:,\:{z}\right)\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\:,\:{c}\right) \\ $$

Question Number 192862    Answers: 1   Comments: 0

Solve for x x^3 −115x+150=0

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{3}} −\mathrm{115}{x}+\mathrm{150}=\mathrm{0} \\ $$

Question Number 192856    Answers: 2   Comments: 0

if a+b+c +d = 63 and a,b,c,d ∈ N find the maximum value of ab+bc+cd = ?

$$\:{if}\:{a}+{b}+{c}\:+{d}\:\:=\:\mathrm{63}\:{and}\:{a},{b},{c},{d}\:\in\:\mathbb{N}\:{find}\: \\ $$$$\:\:\:{the}\:{maximum}\:{value}\:{of}\:{ab}+{bc}+{cd}\:=\:? \\ $$

Question Number 192855    Answers: 2   Comments: 0

Question Number 192852    Answers: 2   Comments: 2

find the domain of thefunction f(x) = (1/( (√(x^2 −{x}^2 )))) where {.} is the fractional part function.

$$ \\ $$$${find}\:{the}\:{domain}\:{of}\:{thefunction} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −\left\{{x}\right\}^{\mathrm{2}} }}\:\:\:\:\:{where}\:\left\{.\right\}\:{is}\:{the}\:{fractional}\:{part}\:{function}. \\ $$

Question Number 192851    Answers: 0   Comments: 1

Solve: ((log_(a^2 (√x)) a)/(log_(2x) a)) + log_(ax) a . log_(1/a) 2x = 0

$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{log}_{{a}^{\mathrm{2}} \sqrt{{x}}} \:{a}}{\mathrm{log}_{\mathrm{2}{x}} \:{a}}\:+\:\mathrm{log}_{{ax}} \:{a}\:.\:\mathrm{log}_{\frac{\mathrm{1}}{{a}}} \:\mathrm{2}{x}\:=\:\mathrm{0} \\ $$

Question Number 192839    Answers: 2   Comments: 0

Question Number 192811    Answers: 1   Comments: 0

  Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71      Pg 72   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com