Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 68
Question Number 193182 Answers: 1 Comments: 0
$$ \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1}\: \\ $$$$ \\ $$$${find}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{w}^{\mathrm{2}} \right). \\ $$
Question Number 193087 Answers: 1 Comments: 0
Question Number 193130 Answers: 3 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{2}} −{c}=\sqrt{{c}−{x}} \\ $$
Question Number 193049 Answers: 0 Comments: 0
Question Number 193045 Answers: 1 Comments: 0
$${what}\:{is}\:{the}\:{HCF}\:{of}\: \\ $$$$\mathrm{8}{k}+\mathrm{1}\:{and}\:\mathrm{9}{k}\:?\:{where}\:{k}\:\in\:\mathbb{Z}^{+} \\ $$
Question Number 193026 Answers: 2 Comments: 0
Question Number 192958 Answers: 4 Comments: 0
Question Number 192957 Answers: 4 Comments: 2
$$ \\ $$$${bx}^{\mathrm{3}} =\mathrm{10}{a}^{\mathrm{2}} {bx}\:+\:\mathrm{3}{a}^{\mathrm{3}} {y}\:,\:{ay}^{\mathrm{3}} =\:\mathrm{10}{ab}^{\mathrm{2}} {y}\:+\:\mathrm{3}{b}^{\mathrm{3}} {x} \\ $$$${solve}\:{for}\:{x}\:{and}\:{y}\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\right) \\ $$$${and}\:{solve}\:{for}\:{a}\:{and}\:{b}\:{in}\:{terms}\:{of}\:\:\left({x}\:,\:{y}\:\right) \\ $$
Question Number 192942 Answers: 2 Comments: 1
Question Number 192937 Answers: 0 Comments: 0
Question Number 192936 Answers: 2 Comments: 0
Question Number 192928 Answers: 1 Comments: 0
$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+{k}\:=\:\mathrm{0}\:{where}\:{k}<\mathrm{0}\: \\ $$$$\left(\frac{\alpha}{\beta}\:+\:\frac{\beta}{\alpha}\right)_{\mathrm{max}} \:=\:? \\ $$
Question Number 192925 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$$$\mathrm{1}.\:\mathrm{2}^{\boldsymbol{\mathrm{x}}+\mathrm{1}} \:+\:\mathrm{0},\mathrm{5}^{\boldsymbol{\mathrm{x}}−\mathrm{2}} \:=\:\mathrm{9} \\ $$$$\mathrm{2}.\:\mathrm{4}^{\mathrm{3}\boldsymbol{\mathrm{x}}} \:=\:\mathrm{12} \\ $$$$\mathrm{3}.\:\mathrm{6}^{\boldsymbol{\mathrm{x}}+\mathrm{2}} \:=\:\mathrm{18} \\ $$
Question Number 192924 Answers: 2 Comments: 0
$$\mathrm{1}\bullet\mathrm{determiner}:\:\mathrm{tan}\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\mathrm{en}\:\mathrm{fonction}\:\mathrm{de}\:\mathrm{tan}\:\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{2}\bullet\mathrm{on}\:\mathrm{donne}\:\:\mathrm{tan}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{8}}\:\:\:\:\mathrm{tan}\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}=? \\ $$$$\mathrm{3}\bullet\:\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{proche}\:\mathrm{de}\:\boldsymbol{\mathrm{x}}? \\ $$
Question Number 192917 Answers: 1 Comments: 0
Question Number 192914 Answers: 1 Comments: 0
$${x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)=\left(\mathrm{1}−\frac{{c}}{{x}}\right)^{\mathrm{3}} +\left(\frac{{c}}{{x}}\right)^{\mathrm{3}} \\ $$
Question Number 192898 Answers: 0 Comments: 1
$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}−\mathrm{2}=\mathrm{0} \\ $$
Question Number 192883 Answers: 1 Comments: 0
Question Number 192875 Answers: 2 Comments: 0
$${x}^{\mathrm{2}} −{yz}={a}^{{n}} \\ $$$${y}^{\mathrm{2}} −{zx}={b}^{{n}} \\ $$$${z}^{\mathrm{2}} −{xy}={c}^{{n}} \\ $$$${find}\:\left({x}\:,\:{y}\:,\:{z}\right)\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\:,\:{c}\right) \\ $$
Question Number 192862 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{3}} −\mathrm{115}{x}+\mathrm{150}=\mathrm{0} \\ $$
Question Number 192856 Answers: 2 Comments: 0
$$\:{if}\:{a}+{b}+{c}\:+{d}\:\:=\:\mathrm{63}\:{and}\:{a},{b},{c},{d}\:\in\:\mathbb{N}\:{find}\: \\ $$$$\:\:\:{the}\:{maximum}\:{value}\:{of}\:{ab}+{bc}+{cd}\:=\:? \\ $$
Question Number 192855 Answers: 2 Comments: 0
Question Number 192852 Answers: 2 Comments: 2
$$ \\ $$$${find}\:{the}\:{domain}\:{of}\:{thefunction} \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −\left\{{x}\right\}^{\mathrm{2}} }}\:\:\:\:\:{where}\:\left\{.\right\}\:{is}\:{the}\:{fractional}\:{part}\:{function}. \\ $$
Question Number 192851 Answers: 0 Comments: 1
$$\mathrm{Solve}: \\ $$$$\frac{\mathrm{log}_{{a}^{\mathrm{2}} \sqrt{{x}}} \:{a}}{\mathrm{log}_{\mathrm{2}{x}} \:{a}}\:+\:\mathrm{log}_{{ax}} \:{a}\:.\:\mathrm{log}_{\frac{\mathrm{1}}{{a}}} \:\mathrm{2}{x}\:=\:\mathrm{0} \\ $$
Question Number 192839 Answers: 2 Comments: 0
Question Number 192811 Answers: 1 Comments: 0
Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71 Pg 72
Terms of Service
Privacy Policy
Contact: info@tinkutara.com