Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 67
Question Number 195253 Answers: 2 Comments: 1
$${If}\:\mathrm{10sin}\:^{\mathrm{4}} {x}+\mathrm{15cos}\:^{\mathrm{4}} {x}=\mathrm{6}. \\ $$$${find}\:{the}\:{value}\:{of} \\ $$$$\mathrm{27cosec}\:^{\mathrm{6}} {x}+\mathrm{8sec}\:^{\mathrm{6}} {x} \\ $$$$ \\ $$
Question Number 195252 Answers: 1 Comments: 0
$$\int_{\boldsymbol{{spillover}}} \:\:\:\:\:\:\frac{{dx}}{\:\sqrt{{e}^{\mathrm{5}{x}} }\:\sqrt{\left({e}^{\mathrm{2}{x}} +{e}^{−\mathrm{2}{x}} \right)^{\mathrm{3}} }} \\ $$
Question Number 195251 Answers: 0 Comments: 1
$${If}\:\:{x}^{\left[\mathrm{16}\left(\mathrm{log}\:_{\mathrm{5}} {x}\right)^{\mathrm{3}} −\mathrm{68log}\:_{\mathrm{5}} {x}\right]} =\mathrm{5}^{−\mathrm{16}} \: \\ $$$$\:{then}\:{Find}\:{the}\:{the}\:{product}\:{of}\:{x} \\ $$$$ \\ $$
Question Number 195248 Answers: 0 Comments: 3
Question Number 195229 Answers: 0 Comments: 9
$${below}\:{equestion}\:{is}\:{show}\:\:{elips}\:{and} \\ $$$${hypharabollah} \\ $$$$\frac{{x}^{\mathrm{2}} }{{cos}\mathrm{3}}+\frac{{y}^{\mathrm{2}} }{{sin}\mathrm{3}}=\mathrm{1} \\ $$
Question Number 195227 Answers: 0 Comments: 0
$$ \\ $$$$\alpha_{\mathrm{1}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left(\alpha_{\mathrm{1}} −\alpha_{{i}} \right)}\right]+\underset{{j}=\mathrm{2}} {\overset{{n}} {\sum}}\left(\alpha_{{j}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\prod}}\left({x}−\alpha_{{i}} \right)\underset{{i}={j}+\mathrm{1}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{j}} \right)}{\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\prod}}\left(\alpha_{{j}} −\alpha_{{i}} \right)\underset{{i}={j}+\mathrm{1}} {\overset{{n}} {\prod}}\left(\alpha_{{j}} −\alpha_{{i}} \right)}\right]+\alpha_{{n}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\alpha_{{n}} −\alpha_{{i}} \right)}\right]−{x}^{\mathrm{3}} =\mathrm{0}\right. \\ $$$${solve}\:{for}\:{x}\:.\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{where}\:{n}\geqslant\mathrm{5}\:\right] \\ $$
Question Number 195194 Answers: 2 Comments: 0
Question Number 195175 Answers: 1 Comments: 0
Question Number 195124 Answers: 1 Comments: 0
Question Number 195122 Answers: 0 Comments: 0
Question Number 195116 Answers: 0 Comments: 2
$${hi}.\:{please}\:{represntation}\:\sqrt[{\mathrm{3}}]{\mathrm{2}}\:{on}\:{number}'{s}\:{axis} \\ $$$${with}\:{ruler}\:{and}\:{compass}\:{and}\:{pen}. \\ $$$${thank}\:{you} \\ $$
Question Number 195121 Answers: 2 Comments: 0
$${x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$${x}^{\mathrm{8}} +\mathrm{2}{x}^{\mathrm{7}} −\mathrm{47}{x}=? \\ $$
Question Number 195107 Answers: 1 Comments: 0
Question Number 195101 Answers: 2 Comments: 0
$$\sqrt{{ln}\mathrm{2}}\:\:\overset{?} {>}{ln}\mathrm{2} \\ $$
Question Number 195027 Answers: 1 Comments: 2
$${a}_{\mathrm{3}} {x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{a}_{\mathrm{1}} {x}−\mathrm{7}=\mathrm{0}\:{is}\:{a}\:{cubic}\:{polynomial}\:{in}\:{x} \\ $$$${whose}\:{Roots}\:{are}\:\alpha\:,\:\beta\:,\:\gamma\:{positive}\:{real}\:{numbers} \\ $$$${satisfying} \\ $$$$\frac{\mathrm{225}\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} +\mathrm{7}}=\frac{\mathrm{144}\beta^{\mathrm{2}} }{\beta^{\mathrm{2}} +\mathrm{7}}=\frac{\mathrm{100}\gamma^{\mathrm{2}} }{\gamma^{\mathrm{2}} +\mathrm{7}} \\ $$$${find}\:\left({a}_{\mathrm{1}} \right) \\ $$
Question Number 195017 Answers: 3 Comments: 0
$$\left({x}+\mathrm{1}\right)^{\mathrm{3}} =\mathrm{1}\:\:\:\:\:\:\:\:\:\:{x}=? \\ $$
Question Number 195002 Answers: 1 Comments: 0
$${x}^{\sqrt{{x}}} =\left(\sqrt{{x}}\right)^{{x}} \:\:\:\:\:{x}=? \\ $$
Question Number 194991 Answers: 0 Comments: 4
$$ \\ $$$${a}_{\mathrm{3}} {x}^{\mathrm{3}} −{x}^{\mathrm{2}} +{a}_{\mathrm{1}} {x}−\mathrm{7}=\mathrm{0}\:{is}\:{a}\:{cubic}\:{polynomial}\:{in}\:{x} \\ $$$${whose}\:{Roots}\:{are}\:\alpha\:,\:\beta\:,\:\gamma\:{positive}\:{real}\:{numbers} \\ $$$${satisfying} \\ $$$$\frac{\mathrm{225}\alpha^{\mathrm{2}} }{\alpha^{\mathrm{2}} +\mathrm{7}}=\frac{\mathrm{144}\beta^{\mathrm{2}} }{\beta^{\mathrm{2}} +\mathrm{7}}=\frac{\mathrm{100}\gamma^{\mathrm{2}} }{\gamma^{\mathrm{2}} +\mathrm{7}} \\ $$$${Find}\:\left({a}_{\mathrm{1}} \right) \\ $$
Question Number 194953 Answers: 1 Comments: 0
$$\:{Let}\:{P}\left({x}\right)=\:{x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}}+{b}\:{and} \\ $$$$\:\:{Q}\left({x}\right)={x}^{\mathrm{2}} +{cx}+{d}\:{be}\:{two}\: \\ $$$$\:\:{polynomial}\:{with}\:{real}\:{coefficients} \\ $$$$\:\:{such}\:{that}\:{P}\left({x}\right){Q}\left({x}\right)=\:{Q}\left({P}\left({x}\right)\right) \\ $$$$\:{for}\:{all}\:{real}\:{x}\:. \\ $$$$\:\:{Find}\:{all}\:{the}\:{real}\:{roots}\:{of}\: \\ $$$$\:\:{P}\left({Q}\left({x}\right)\right)=\mathrm{0}\: \\ $$
Question Number 194952 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{x}}\:+\:\sqrt{\mathrm{17}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:\:+\:\boldsymbol{\mathrm{x}}\sqrt{\mathrm{17}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} \:}\:=\mathrm{9} \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{possible}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{X}} \\ $$
Question Number 194942 Answers: 2 Comments: 2
$$\:\:\: =\: \left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\mathrm{y} \\ $$$$\:\:\:\:\:\:\:\: +\:\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\mathrm{x} \\ $$$$\:\:\:\:\:\:\:\mathrm{x}\:\neq\:\mathrm{y}\:\mathrm{and}\:\mathrm{x}+\mathrm{y}\:\neq\:\mathrm{0} \\ $$$$\:\:\:\:\:\:\: \left(\frac{\mathrm{x}}{\mathrm{y}}\right)^{\mathrm{2025}} +\left(\frac{\mathrm{y}}{\mathrm{x}}\right)^{\mathrm{2025}} \\ $$
Question Number 194914 Answers: 2 Comments: 0
Question Number 194899 Answers: 1 Comments: 0
Question Number 194900 Answers: 1 Comments: 0
$$\:\:\:\:\:\:{Given}\:\:\:{d}\:=\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}+\:\sqrt{\mathrm{5}}}}{\mathrm{1}+\sqrt{\mathrm{5}}}\:\: \\ $$$$\:\:\:\:\:\:{then}\:\:{d}^{\mathrm{3}} −\mathrm{4}{d}^{\mathrm{2}} \:+\mathrm{8}{d}\:−\mathrm{2}\:=?\: \\ $$$$\:\:\:\:\: \\ $$
Question Number 194888 Answers: 1 Comments: 0
Question Number 194884 Answers: 1 Comments: 0
$$\:\:\:\:\:\:{x}!\:=\:\mathrm{6}!.\:\mathrm{7}!\: \\ $$$$\:\:\:\:\:\:{x}^{\mathrm{2}} \:=?\: \\ $$
Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71
Terms of Service
Privacy Policy
Contact: info@tinkutara.com