Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 67
Question Number 187233 Answers: 1 Comments: 1
$${Find}\:{x}\:{if}\::\:\:\:{x}^{\mathrm{4}} +{a}={x}\:\:\:\:\forall\:\left(\mathrm{0}<{a}<\frac{\mathrm{2}}{\mathrm{9}}\right)\:\:\: \\ $$
Question Number 187209 Answers: 0 Comments: 1
Question Number 187166 Answers: 0 Comments: 0
$${x}^{\mathrm{3}} ={x}+{c} \\ $$$${let}\:\:{x}=\frac{{mt}}{\mathrm{1}−{t}} \\ $$$${m}^{\mathrm{3}} {t}^{\mathrm{3}} ={mt}\left(\mathrm{1}−{t}\right)^{\mathrm{2}} +{c}\left(\mathrm{1}−{t}\right)^{\mathrm{3}} \\ $$$$\Rightarrow \\ $$$$\left({m}^{\mathrm{3}} −{m}−{c}\right){t}^{\mathrm{3}} +\left(\mathrm{2}{m}−\mathrm{3}{c}\right){t}^{\mathrm{2}} \\ $$$$\:\:\:\:\:+\left(\mathrm{3}{c}−{m}\right){t}−{c}=\mathrm{0} \\ $$$${t}^{\mathrm{3}} +{At}^{\mathrm{2}} +{Bt}+{C}=\mathrm{0} \\ $$$${let}\:\:{AB}={C} \\ $$$$\Rightarrow\:\left(\mathrm{2}{m}−\mathrm{3}{c}\right)\left({m}−\mathrm{3}{c}\right)={c}\left({m}^{\mathrm{3}} −{m}−{c}\right) \\ $$$$\Rightarrow\:{m}^{\mathrm{3}} −\frac{\mathrm{2}}{{c}}{m}^{\mathrm{2}} −\mathrm{8}{m}+\mathrm{10}{c}=\mathrm{0} \\ $$$$... \\ $$
Question Number 187124 Answers: 2 Comments: 0
$$\frac{{a}}{{x}}=\frac{{b}}{{y}}=\frac{{c}}{{z}}=\frac{\mathrm{1}}{\mathrm{3}}\:, \\ $$$${a}−\mathrm{2}{b}+{c}=\mathrm{2}\:\:{and}\:\:−\mathrm{2}{y}+{z}=\mathrm{1}\:\:\:\: \\ $$$${x}=? \\ $$$${An}\:{altered}\:{form}\:{of}\:\:{q}#\mathrm{187020} \\ $$$$\left({In}\:{this}\:{case}\:{solveable}\right) \\ $$
Question Number 187008 Answers: 2 Comments: 0
$$\frac{{a}}{\mathrm{3}}=\frac{{b}}{\mathrm{4}}=\frac{{c}}{\mathrm{5}}\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}{a}+{c}=\mathrm{42}\:\:\:\:\:\:\:\:{b}=? \\ $$$${how}\:{is}\:{solution} \\ $$
Question Number 186941 Answers: 0 Comments: 1
$$\frac{{sinx}}{{x}^{{b}} }=\frac{\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}{x}^{\mathrm{2}{n}+\mathrm{1}} }{{x}^{{b}} } \\ $$$${prove}\:{that} \\ $$
Question Number 186929 Answers: 3 Comments: 0
$$\:\:{If}\:\begin{cases}{{B}+{R}+{P}=−\mathrm{1}}\\{{B}^{\mathrm{2}} +{R}^{\mathrm{2}} +{P}^{\mathrm{2}} =\mathrm{17}}\\{{B}^{\mathrm{3}} +{R}^{\mathrm{3}} +{P}^{\mathrm{3}} =\mathrm{11}}\end{cases} \\ $$$$\:{then}\:{B}^{\mathrm{5}} +{R}^{\mathrm{5}} +{P}^{\mathrm{5}} \:=? \\ $$
Question Number 186867 Answers: 2 Comments: 0
Question Number 186864 Answers: 2 Comments: 0
$${if}\:\:{AB},{BA}\:{and}\:{BB}\:\:{three}\:\:{tow}\:{digits}\:{natural} \\ $$$${numbers}\:{if}\:\:\frac{\left({AB}+{BA}\right)}{{BB}}=\mathrm{4} \\ $$$${then}\:{find}\:{the}\:{maximum}\:{volue}\:{of} \\ $$$$\left({A}+{B}\right)=? \\ $$
Question Number 186772 Answers: 0 Comments: 0
$$ \\ $$
Question Number 186701 Answers: 2 Comments: 2
Question Number 186690 Answers: 1 Comments: 0
Question Number 186682 Answers: 0 Comments: 0
$$\mathrm{Prove}\:\mathrm{the}\:\mathrm{following}\:\mathrm{set}\:\mathrm{identities} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{A}\cup\left(\mathrm{B}\cup\mathrm{C}\right)=\left(\mathrm{A}\cup\mathrm{B}\right)\cup\mathrm{C} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{A}\cup\varnothing=\mathrm{A} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{A}\cap\left(\mathrm{B}\cup\mathrm{C}\right)=\left(\mathrm{A}\cap\mathrm{B}\right)\cup\left(\mathrm{A}\cap\mathrm{C}\right) \\ $$
Question Number 186732 Answers: 2 Comments: 0
Question Number 186657 Answers: 1 Comments: 0
Question Number 186616 Answers: 1 Comments: 0
Question Number 186627 Answers: 2 Comments: 1
Question Number 186582 Answers: 0 Comments: 0
$$\left(\frac{\mathrm{10}{x}^{\mathrm{3}} −{c}}{\mathrm{4}{x}^{\mathrm{4}} −{x}+\mathrm{1}}+{x}^{\mathrm{2}} \right)^{\mathrm{2}} ={x}\left({x}^{\mathrm{3}} +\mathrm{1}\right) \\ $$
Question Number 186572 Answers: 1 Comments: 0
$${f}=\left\{\left(\mathrm{1},\mathrm{2}\right),\left(\mathrm{4},\mathrm{6}\right),\left(\mathrm{5},\mathrm{8}\right)\right\}\:\:{and}\:\:\:{g}=\left\{\left(\mathrm{1},\mathrm{7}\right),\left(\mathrm{2},\mathrm{4}\right),\left(\mathrm{5},\mathrm{8}\right)\right\} \\ $$$${the}\:{domain}\:{of}\:\:\:{f}\left({g}\left({x}\right)\right)\:\:\:{which}\:{number}\:{is}\:{not}\:{include}? \\ $$$$\left.\mathrm{1}\left.\right)\left.\mathrm{1}\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\right)\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3}\right)\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{4}\right){all}\:{corect} \\ $$$${how}\:{is}\:{the}\:{solution}? \\ $$
Question Number 186571 Answers: 2 Comments: 0
$${If}\:\:\:{x}=−\frac{\mathrm{1}}{\left(\mathrm{1}+{m}\right)}\left(\frac{\mathrm{2}}{\mathrm{3}}\pm\sqrt{\frac{\mathrm{4}}{\mathrm{9}}\pm\frac{{ia}\sqrt{{m}}}{\mathrm{12}}}\right) \\ $$$${where}\:\:\:\left(\mathrm{1}+{m}\right)^{\mathrm{2}} ={am} \\ $$$$\:\:\:\:{and}\:{that}\:\:\mathrm{9}{a}\left({a}+\mathrm{16}\right)^{\mathrm{2}} =\left(\mathrm{16}\right)^{\mathrm{3}} \\ $$$${Find}\:{real}\:{x}. \\ $$
Question Number 186544 Answers: 0 Comments: 1
Question Number 186540 Answers: 0 Comments: 0
$${Complex}\:{Numbers} \\ $$$${Prove}\:{that} \\ $$$$\:\mathrm{1}.\:\mid{Z}_{\mathrm{1}} +{Z}_{\mathrm{2}} \mid\leq\mid{Z}_{\mathrm{1}} \mid+\mid{Z}_{\mathrm{2}} \mid \\ $$$$\mathrm{2}.\:\mid{Z}_{\mathrm{1}} −{Z}_{\mathrm{2}} \mid\geq\mid{Z}_{\mathrm{1}} \mid−\mid{Z}_{\mathrm{2}} \mid \\ $$
Question Number 186503 Answers: 0 Comments: 1
$$ \\ $$$$\:\:\:{function}\:{of}\:,\:{f}\:\left({x}\right)\:=\:{ax}\:\:+\:\mid\:{x}\:\mid\:{is}\:\:{one}\:{to}\:{one} \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:.{find}\:\:\:\:''\:\:\:\:{a}\:\:\:\:''\:\:. \\ $$$$\:\: \\ $$
Question Number 186489 Answers: 1 Comments: 0
Question Number 186486 Answers: 0 Comments: 6
$${Question}\:{propose}\:{par} \\ $$$${Migma} \\ $$$$−−−−−−−−−−− \\ $$$${calcul}\:{de}\:{X} \\ $$$$ \\ $$$$\bigtriangleup{ABC}\:\:\:\:\:\:\measuredangle{ACB}=\mathrm{40}^{°} \\ $$$$\mathrm{AB}^{\mathrm{2}} =\mathrm{AC}^{\mathrm{2}} +\mathrm{BC}^{\mathrm{2}} −\mathrm{2AC}×\mathrm{BCcos}\:\mathrm{40}\:\:\:\: \\ $$$$\mathrm{AC}=\mathrm{15}\:\:;\:\:\:\:\mathrm{AB}=\mathrm{X}+\mathrm{4}\:;\:\:\:\mathrm{BC}=\mathrm{10} \\ $$$$\left(\mathrm{X}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{15}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} −\mathrm{300}×\mathrm{cos}\:\mathrm{40} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{325}−\mathrm{229},\mathrm{81334} \\ $$$$\left({X}+\mathrm{4}\right)^{\mathrm{2}} =\mathrm{95},\mathrm{18666706} \\ $$$${posons}\:\:\:{Z}={X}+\mathrm{4} \\ $$$$\:\:\:{Z}^{\mathrm{2}} =\mathrm{9},\mathrm{756}^{\mathrm{2}} \:\:\:\:\Rightarrow\mathrm{X}+\mathrm{4}=\mathrm{9},\mathrm{756} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:{X}=\mathrm{5},\mathrm{756} \\ $$$$ \\ $$
Question Number 186419 Answers: 3 Comments: 0
$$ \\ $$$$\:\:\mathrm{I}{f}\:,\:\sqrt[{\mathrm{3}}]{\:\mathrm{1}\:−\:{l}\overset{} {{o}g}_{\:\mathrm{2}} \left({x}\right)}\:\:+\:\sqrt[{\mathrm{3}}]{\mathrm{1}\overset{} {+}{log}_{\:\mathrm{2}} \left({x}\right)}\:−\mathrm{1}=\mathrm{0}\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\:{x}\:=\:?\:\:\:\: \\ $$
Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70 Pg 71
Terms of Service
Privacy Policy
Contact: info@tinkutara.com