Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 67

Question Number 190611    Answers: 0   Comments: 2

Montrer que: 1•c^2 =a^2 +b^2 2• rayon r=(c/(1+(√2)))−((a+b)/(2+(√2)))

$$\mathrm{Montrer}\:\mathrm{que}: \\ $$$$\mathrm{1}\bullet\boldsymbol{\mathrm{c}}^{\mathrm{2}} =\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\boldsymbol{\mathrm{b}}^{\mathrm{2}} \\ $$$$\mathrm{2}\bullet\:\mathrm{rayon}\:\:\:\:\:\boldsymbol{\mathrm{r}}=\frac{\boldsymbol{\mathrm{c}}}{\mathrm{1}+\sqrt{\mathrm{2}}}−\frac{\boldsymbol{\mathrm{a}}+\boldsymbol{\mathrm{b}}}{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$$$ \\ $$

Question Number 190607    Answers: 0   Comments: 0

Question Number 190536    Answers: 1   Comments: 0

If p,q and r are the roots of equation x^3 −3x^2 +1 = 0 then find the value of ((3p−2))^(1/3) +((3q−2))^(1/3) +((3r−2))^(1/3)

$$\:\mathrm{If}\:\mathrm{p},\mathrm{q}\:\mathrm{and}\:\mathrm{r}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\:\mathrm{x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value} \\ $$$$\:\mathrm{of}\:\sqrt[{\mathrm{3}}]{\mathrm{3p}−\mathrm{2}}\:+\sqrt[{\mathrm{3}}]{\mathrm{3q}−\mathrm{2}}+\sqrt[{\mathrm{3}}]{\mathrm{3r}−\mathrm{2}}\: \\ $$

Question Number 190523    Answers: 1   Comments: 0

Question Number 190522    Answers: 1   Comments: 0

Question Number 190520    Answers: 2   Comments: 0

if a,b and c root of the x^3 −16x^2 −57x+1=0 thi find thd volue of a^(1/5) +b^(1/5) +c^(1/5) =?

$${if}\:{a},{b}\:{and}\:{c}\:{root}\:{of}\:{the} \\ $$$${x}^{\mathrm{3}} −\mathrm{16}{x}^{\mathrm{2}} −\mathrm{57}{x}+\mathrm{1}=\mathrm{0} \\ $$$${thi}\:{find}\:{thd}\:{volue}\:{of} \\ $$$${a}^{\frac{\mathrm{1}}{\mathrm{5}}} +{b}^{\frac{\mathrm{1}}{\mathrm{5}}} +{c}^{\frac{\mathrm{1}}{\mathrm{5}}} =? \\ $$

Question Number 190448    Answers: 1   Comments: 0

Question Number 190435    Answers: 2   Comments: 0

how is solution lim_(x→0) ((x^(10) ∙sin^4 x∙cos^8 x∙(x+1)^3 )/(x^4 +3x^3 +3x^2 +x))=?

$$ \\ $$$$\mathrm{how}\:\mathrm{is}\:\mathrm{solution} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{x}^{\mathrm{10}} \centerdot\mathrm{sin}^{\mathrm{4}} \mathrm{x}\centerdot\mathrm{cos}^{\mathrm{8}} \mathrm{x}\centerdot\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} }{\mathrm{x}^{\mathrm{4}} +\mathrm{3x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} +\mathrm{x}}=? \\ $$$$ \\ $$

Question Number 190407    Answers: 2   Comments: 0

Question Number 190392    Answers: 1   Comments: 1

If a + b = 3 Find: ((a^2 + b^2 − 2a − 2b)/(a^2 − b^2 − 4a + 4))

$$\mathrm{If}\:\:\:\mathrm{a}\:+\:\mathrm{b}\:=\:\mathrm{3} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{2a}\:−\:\mathrm{2b}}{\mathrm{a}^{\mathrm{2}} \:−\:\mathrm{b}^{\mathrm{2}} \:−\:\mathrm{4a}\:+\:\mathrm{4}} \\ $$

Question Number 190357    Answers: 0   Comments: 1

Question Number 190325    Answers: 1   Comments: 0

Question Number 190324    Answers: 1   Comments: 1

Question Number 190321    Answers: 0   Comments: 1

What is the length x of triangle equilateral A^′ B′C′,such that Area(triangle ABC)=Area(triangle A′B^′ C′)

$${What}\:{is}\:{the}\:{length}\:\:\boldsymbol{{x}}\:\:{of}\:{triangle} \\ $$$${equilateral}\:{A}^{'} {B}'{C}',{such}\:{that} \\ $$$${Area}\left({triangle}\:{ABC}\right)={Area}\left({triangle}\:{A}'{B}^{'} {C}'\right) \\ $$$$ \\ $$

Question Number 190303    Answers: 1   Comments: 0

If, f(x)= ((⌊−x ⌋)/x) +1 ⇒ critical points = ?

$$ \\ $$$$\:\:\:\:\:\mathrm{I}{f},\:\:{f}\left({x}\right)=\:\frac{\lfloor−{x}\:\rfloor}{{x}}\:+\mathrm{1}\:\:\Rightarrow\:\:{critical}\:{points}\:\:=\:? \\ $$$$ \\ $$

Question Number 190297    Answers: 1   Comments: 0

Question Number 190284    Answers: 2   Comments: 0

find the remainder if 4^(2023) divides by 7

$$\mathrm{find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{if}\:\mathrm{4}^{\mathrm{2023}} \: \\ $$$$\mathrm{divides}\:\mathrm{by}\:\mathrm{7} \\ $$

Question Number 190275    Answers: 1   Comments: 0

Find the value of i^n for every positive integer n, where i^2 = −1, i^3 = i^2 i, i^4 = i^2 i^2 , etc.

$$\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{i}^{\mathrm{n}} \:\mathrm{for}\:\mathrm{every}\:\mathrm{positive} \\ $$$$\:\mathrm{integer}\:\mathrm{n},\:\mathrm{where}\:\mathrm{i}^{\mathrm{2}} \:=\:−\mathrm{1},\:\mathrm{i}^{\mathrm{3}} =\:\mathrm{i}^{\mathrm{2}} \mathrm{i},\:\mathrm{i}^{\mathrm{4}} \:=\:\mathrm{i}^{\mathrm{2}} \mathrm{i}^{\mathrm{2}} \:,\:{etc}. \\ $$

Question Number 190241    Answers: 1   Comments: 0

show that a⊛b=a+ab+b is a monoid when G=Z

$${show}\:{that}\:{a}\circledast{b}={a}+{ab}+{b}\:{is}\:{a}\:{monoid}\:{when}\:{G}={Z} \\ $$

Question Number 190239    Answers: 0   Comments: 0

Question Number 190238    Answers: 0   Comments: 0

Question Number 190237    Answers: 0   Comments: 0

Question Number 190137    Answers: 2   Comments: 0

{ ((fog^(−1) (x)=3x+2)),((gof(x)=2x−1)) :} find f(x)=? and fof(3)=?

$$\begin{cases}{\mathrm{fog}^{−\mathrm{1}} \left(\mathrm{x}\right)=\mathrm{3x}+\mathrm{2}}\\{\mathrm{gof}\left(\mathrm{x}\right)=\mathrm{2x}−\mathrm{1}}\end{cases} \\ $$$${find}\:\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=?\:\:\:\mathrm{and}\:\:\:\:\mathrm{fof}\left(\mathrm{3}\right)=? \\ $$

Question Number 190131    Answers: 1   Comments: 0

if: x^2 +y^2 +z^2 + 14 = 2(x + 2y + 3z) find: T=((xyz)/(x^3 +y^3 +z^3 ))

$$\:\mathrm{if}:\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{14}\:=\:\mathrm{2}\left(\mathrm{x}\:+\:\mathrm{2y}\:+\:\mathrm{3z}\right) \\ $$$$\:\mathrm{find}:\:\:\mathrm{T}=\frac{\mathrm{xyz}}{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} +\mathrm{z}^{\mathrm{3}} }\: \\ $$

Question Number 190115    Answers: 1   Comments: 0

if: (a+b)(a+1) = b find: P = (√(a^3 +b^3 −3ab))

$$\mathrm{if}:\:\:\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}+\mathrm{1}\right)\:=\:\mathrm{b} \\ $$$$\:\mathrm{find}:\:\:\mathrm{P}\:=\:\:\sqrt{\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} −\mathrm{3ab}} \\ $$

Question Number 190093    Answers: 2   Comments: 3

prove that : c= ( (√5) +2)^( (1/3)) − ((√5) −2)^( (1/3)) is a rational number.

$$ \\ $$$$\:\:\:\:\:{prove}\:\:{that}\:: \\ $$$$ \\ $$$${c}=\:\left(\:\sqrt{\mathrm{5}}\:+\mathrm{2}\right)^{\:\frac{\mathrm{1}}{\mathrm{3}}} \:−\:\left(\sqrt{\mathrm{5}}\:−\mathrm{2}\right)^{\:\frac{\mathrm{1}}{\mathrm{3}}} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\mathrm{is}\:\:\:\mathrm{a}\:\:{rational}\:\:\mathrm{number}. \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\:\: \\ $$

  Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70      Pg 71   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com