Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 66

Question Number 194037    Answers: 3   Comments: 0

Let a_1 ,a_2 ....a_n ∈R^+ , a_1 +a_2 +.....a_n =1 prove that: (a_1 /(2−a_1 ))+(a_2 /(2−a_2 )).......(a_n /(2−a_n ))≥(n/(2n−1))

$$ \\ $$$${Let}\:{a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ....{a}_{{n}} \in{R}^{+} ,\:{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +.....{a}_{{n}} =\mathrm{1} \\ $$$${prove}\:{that}: \\ $$$$\frac{{a}_{\mathrm{1}} }{\mathrm{2}−{a}_{\mathrm{1}} }+\frac{{a}_{\mathrm{2}} }{\mathrm{2}−{a}_{\mathrm{2}} }.......\frac{{a}_{{n}} }{\mathrm{2}−{a}_{{n}} }\geqslant\frac{{n}}{\mathrm{2}{n}−\mathrm{1}} \\ $$

Question Number 193978    Answers: 1   Comments: 0

Question Number 193972    Answers: 0   Comments: 4

Question Number 193965    Answers: 2   Comments: 0

a,b,c are positive real numbers And (1/(a+b+1))+(1/(b+c+1))+(1/(a+c+1))≥1 prove that a+b+c≥ab+bc+ac

$${a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers} \\ $$$${And} \\ $$$$\frac{\mathrm{1}}{{a}+{b}+\mathrm{1}}+\frac{\mathrm{1}}{{b}+{c}+\mathrm{1}}+\frac{\mathrm{1}}{{a}+{c}+\mathrm{1}}\geqslant\mathrm{1} \\ $$$${prove}\:{that}\:{a}+{b}+{c}\geqslant{ab}+{bc}+{ac} \\ $$

Question Number 193962    Answers: 2   Comments: 0

Question Number 194691    Answers: 0   Comments: 0

a, b, c≥0, a+b+c=2. Prove that 3a+8ab+16abc≤12.

$${a},\:{b},\:{c}\geqslant\mathrm{0},\:{a}+{b}+{c}=\mathrm{2}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{3}{a}+\mathrm{8}{ab}+\mathrm{16}{abc}\leqslant\mathrm{12}. \\ $$

Question Number 193922    Answers: 4   Comments: 0

Question Number 193886    Answers: 2   Comments: 0

Question Number 193875    Answers: 2   Comments: 0

a,b,c,d,e,f, are + real numbers prove: (a/(b+c))+(b/(c+d))+(c/(d+e))+(d/(e+f))+(e/(f+a))+(f/(a+b))≥3

$${a},{b},{c},{d},{e},{f},\:{are}\:+\:{real}\:{numbers} \\ $$$${prove}: \\ $$$$\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{d}}+\frac{{c}}{{d}+{e}}+\frac{{d}}{{e}+{f}}+\frac{{e}}{{f}+{a}}+\frac{{f}}{{a}+{b}}\geqslant\mathrm{3} \\ $$

Question Number 193848    Answers: 2   Comments: 0

Question Number 193796    Answers: 0   Comments: 0

Let G be a finite group,f be an automorphism of G such that f(x)=x ⇒x=e . Then prove that, (i)∀g∈G, ∃x∈G such that g=x^(−1) f(x). (ii)If ∀x∈G , f(f(x))=x ⇒ G is Abelian.

$${Let}\:{G}\:{be}\:{a}\:{finite}\:{group},{f}\:{be}\:{an}\:{automorphism}\:{of}\:{G} \\ $$$${such}\:{that}\:{f}\left({x}\right)={x}\:\Rightarrow{x}={e}\:. \\ $$$${Then}\:{prove}\:{that}, \\ $$$$\left(\boldsymbol{{i}}\right)\forall{g}\in{G},\:\exists{x}\in{G}\:{such}\:{that}\:{g}={x}^{−\mathrm{1}} {f}\left({x}\right). \\ $$$$\left(\boldsymbol{{ii}}\right){If}\:\forall{x}\in{G}\:,\:{f}\left({f}\left({x}\right)\right)={x}\:\Rightarrow\:{G}\:{is}\:{Abelian}. \\ $$$$ \\ $$

Question Number 193794    Answers: 1   Comments: 0

Let H be a subgroup of (R,+) such that H∩[−1,1] contains a non zero element. Prove that H is cyclic.

$${Let}\:{H}\:{be}\:{a}\:{subgroup}\:{of}\:\left(\mathbb{R},+\right)\:{such}\:{that}\:{H}\cap\left[−\mathrm{1},\mathrm{1}\right]\: \\ $$$${contains}\:{a}\:{non}\:{zero}\:{element}. \\ $$$${Prove}\:{that}\:{H}\:{is}\:{cyclic}. \\ $$

Question Number 193793    Answers: 1   Comments: 4

Question Number 193769    Answers: 0   Comments: 0

Question Number 193757    Answers: 0   Comments: 0

Question Number 193714    Answers: 1   Comments: 3

Question Number 193707    Answers: 1   Comments: 0

Question Number 193688    Answers: 1   Comments: 0

Question Number 193687    Answers: 0   Comments: 2

Question Number 193651    Answers: 0   Comments: 1

determiner rayon R

$$\mathrm{determiner}\:\mathrm{rayon}\:\boldsymbol{\mathrm{R}} \\ $$

Question Number 193647    Answers: 2   Comments: 0

Question Number 193565    Answers: 1   Comments: 0

Question Number 193546    Answers: 2   Comments: 0

if a+b+c=1 find maximum ab +bc +ca a , b , c are non negative integers

$${if}\:{a}+{b}+{c}=\mathrm{1} \\ $$$${find}\:{maximum}\:{ab}\:+{bc}\:+{ca}\: \\ $$$${a}\:,\:{b}\:,\:{c}\:{are}\:{non}\:{negative}\:{integers} \\ $$$$ \\ $$

Question Number 193543    Answers: 0   Comments: 4

solve

$${solve} \\ $$

Question Number 193542    Answers: 1   Comments: 2

f(x) = x^3 +3x^2 −1 1) calcul h(X) = f(a+X) −b 2) determine a and b such that h is odd

$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calcul}\:\:\:\:\mathrm{h}\left(\mathrm{X}\right)\:=\:\mathrm{f}\left(\mathrm{a}+\mathrm{X}\right)\:−\mathrm{b} \\ $$2) determine a and b such that h is odd

Question Number 193525    Answers: 2   Comments: 0

((27t73)/(11)) and R=0 then t=? how is explontry solution

$$\:\:\:\:\:\frac{\mathrm{27t73}}{\mathrm{11}} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{R}=\mathrm{0}\:\:\:\mathrm{then}\:\mathrm{t}=? \\ $$$$\:\:\:\:\:\:\mathrm{how}\:\mathrm{is}\:\mathrm{explontry}\:\mathrm{solution} \\ $$

  Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68      Pg 69      Pg 70   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com