Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 66
Question Number 194037 Answers: 3 Comments: 0
$$ \\ $$$${Let}\:{a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ....{a}_{{n}} \in{R}^{+} ,\:{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +.....{a}_{{n}} =\mathrm{1} \\ $$$${prove}\:{that}: \\ $$$$\frac{{a}_{\mathrm{1}} }{\mathrm{2}−{a}_{\mathrm{1}} }+\frac{{a}_{\mathrm{2}} }{\mathrm{2}−{a}_{\mathrm{2}} }.......\frac{{a}_{{n}} }{\mathrm{2}−{a}_{{n}} }\geqslant\frac{{n}}{\mathrm{2}{n}−\mathrm{1}} \\ $$
Question Number 193978 Answers: 1 Comments: 0
Question Number 193972 Answers: 0 Comments: 4
Question Number 193965 Answers: 2 Comments: 0
$${a},{b},{c}\:{are}\:{positive}\:{real}\:{numbers} \\ $$$${And} \\ $$$$\frac{\mathrm{1}}{{a}+{b}+\mathrm{1}}+\frac{\mathrm{1}}{{b}+{c}+\mathrm{1}}+\frac{\mathrm{1}}{{a}+{c}+\mathrm{1}}\geqslant\mathrm{1} \\ $$$${prove}\:{that}\:{a}+{b}+{c}\geqslant{ab}+{bc}+{ac} \\ $$
Question Number 193962 Answers: 2 Comments: 0
Question Number 194691 Answers: 0 Comments: 0
$${a},\:{b},\:{c}\geqslant\mathrm{0},\:{a}+{b}+{c}=\mathrm{2}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{3}{a}+\mathrm{8}{ab}+\mathrm{16}{abc}\leqslant\mathrm{12}. \\ $$
Question Number 193922 Answers: 4 Comments: 0
Question Number 193886 Answers: 2 Comments: 0
Question Number 193875 Answers: 2 Comments: 0
$${a},{b},{c},{d},{e},{f},\:{are}\:+\:{real}\:{numbers} \\ $$$${prove}: \\ $$$$\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{d}}+\frac{{c}}{{d}+{e}}+\frac{{d}}{{e}+{f}}+\frac{{e}}{{f}+{a}}+\frac{{f}}{{a}+{b}}\geqslant\mathrm{3} \\ $$
Question Number 193848 Answers: 2 Comments: 0
Question Number 193796 Answers: 0 Comments: 0
$${Let}\:{G}\:{be}\:{a}\:{finite}\:{group},{f}\:{be}\:{an}\:{automorphism}\:{of}\:{G} \\ $$$${such}\:{that}\:{f}\left({x}\right)={x}\:\Rightarrow{x}={e}\:. \\ $$$${Then}\:{prove}\:{that}, \\ $$$$\left(\boldsymbol{{i}}\right)\forall{g}\in{G},\:\exists{x}\in{G}\:{such}\:{that}\:{g}={x}^{−\mathrm{1}} {f}\left({x}\right). \\ $$$$\left(\boldsymbol{{ii}}\right){If}\:\forall{x}\in{G}\:,\:{f}\left({f}\left({x}\right)\right)={x}\:\Rightarrow\:{G}\:{is}\:{Abelian}. \\ $$$$ \\ $$
Question Number 193794 Answers: 1 Comments: 0
$${Let}\:{H}\:{be}\:{a}\:{subgroup}\:{of}\:\left(\mathbb{R},+\right)\:{such}\:{that}\:{H}\cap\left[−\mathrm{1},\mathrm{1}\right]\: \\ $$$${contains}\:{a}\:{non}\:{zero}\:{element}. \\ $$$${Prove}\:{that}\:{H}\:{is}\:{cyclic}. \\ $$
Question Number 193793 Answers: 1 Comments: 4
Question Number 193769 Answers: 0 Comments: 0
Question Number 193757 Answers: 0 Comments: 0
Question Number 193714 Answers: 1 Comments: 3
Question Number 193707 Answers: 1 Comments: 0
Question Number 193688 Answers: 1 Comments: 0
Question Number 193687 Answers: 0 Comments: 2
Question Number 193651 Answers: 0 Comments: 1
$$\mathrm{determiner}\:\mathrm{rayon}\:\boldsymbol{\mathrm{R}} \\ $$
Question Number 193647 Answers: 2 Comments: 0
Question Number 193565 Answers: 1 Comments: 0
Question Number 193546 Answers: 2 Comments: 0
$${if}\:{a}+{b}+{c}=\mathrm{1} \\ $$$${find}\:{maximum}\:{ab}\:+{bc}\:+{ca}\: \\ $$$${a}\:,\:{b}\:,\:{c}\:{are}\:{non}\:{negative}\:{integers} \\ $$$$ \\ $$
Question Number 193543 Answers: 0 Comments: 4
$${solve} \\ $$
Question Number 193542 Answers: 1 Comments: 2
$$\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{x}^{\mathrm{3}} +\mathrm{3x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:\mathrm{calcul}\:\:\:\:\mathrm{h}\left(\mathrm{X}\right)\:=\:\mathrm{f}\left(\mathrm{a}+\mathrm{X}\right)\:−\mathrm{b} \\ $$2) determine a and b such that h is odd
Question Number 193525 Answers: 2 Comments: 0
$$\:\:\:\:\:\frac{\mathrm{27t73}}{\mathrm{11}} \\ $$$$\:\:\:\:\:\mathrm{and}\:\mathrm{R}=\mathrm{0}\:\:\:\mathrm{then}\:\mathrm{t}=? \\ $$$$\:\:\:\:\:\:\mathrm{how}\:\mathrm{is}\:\mathrm{explontry}\:\mathrm{solution} \\ $$
Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69 Pg 70
Terms of Service
Privacy Policy
Contact: info@tinkutara.com