Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 65
Question Number 195370 Answers: 0 Comments: 0
Question Number 195369 Answers: 1 Comments: 0
Question Number 195368 Answers: 0 Comments: 0
Question Number 195361 Answers: 0 Comments: 0
Question Number 195357 Answers: 2 Comments: 0
Question Number 195356 Answers: 2 Comments: 0
$$\mathrm{remark}\:\mathrm{to}\:\mathrm{question}\:\mathrm{195301}\:\mathrm{and}\:\mathrm{similar}\:\mathrm{ones} \\ $$$${x}^{\mathrm{2}} +{y}={a} \\ $$$${x}+{y}^{\mathrm{2}} ={b} \\ $$$${a},\:{b}\:>\mathrm{0} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{solutions}\:\mathrm{depending}\:\mathrm{on}\:{a},\:{b}? \\ $$
Question Number 195349 Answers: 0 Comments: 0
Question Number 195331 Answers: 1 Comments: 0
Question Number 195330 Answers: 0 Comments: 1
Question Number 200302 Answers: 1 Comments: 0
Question Number 195292 Answers: 1 Comments: 0
Question Number 195291 Answers: 1 Comments: 0
$$\:\:{it}\:{is}\:{given}\:{a},{b},{c}\:\in\:\mathbb{N}^{\ast} \:\:{and}\:\:{ab}<{c}\:.\:{Prove}\:{that}\:{a}+{b}\leqslant{c}. \\ $$
Question Number 195288 Answers: 0 Comments: 1
$${x},\:{y},\:{z}\in\mathbb{R}_{+} , \\ $$$${P}\:=\:\frac{{x}}{{x}\:+\:{y}}\:+\:\frac{{y}}{{y}\:+\:{z}}\:+\:\frac{{z}}{{z}\:+\:{x}}, \\ $$$${Q}\:=\:\frac{{y}}{{x}\:+\:{y}}\:+\:\frac{{z}}{{y}\:+\:{z}}\:+\:\frac{{x}}{{z}\:+\:{x}}, \\ $$$${Q}\:=\:\frac{{z}}{{x}\:+\:{y}}\:+\:\frac{{x}}{{y}\:+\:{z}}\:+\:\frac{{y}}{{z}\:+\:{x}}. \\ $$$${f}\left({x},\:{y},\:{z}\right)=\mathrm{max}\left\{{P},\:{Q},\:{R}\right\},\:\mathrm{find}\:{f}_{\mathrm{min}} . \\ $$
Question Number 195454 Answers: 4 Comments: 1
Question Number 195255 Answers: 2 Comments: 0
$$\int\frac{{dx}}{\mathrm{cos}\:^{\mathrm{3}} {x}\sqrt{\mathrm{4sin}\:{x}\mathrm{cos}\:{x}}} \\ $$
Question Number 195254 Answers: 1 Comments: 0
$$\int^{\boldsymbol{{spillover}}} \frac{\mathrm{sin}\:^{\mathrm{2}} {x}\mathrm{cos}\:^{\mathrm{2}} {x}}{\left(\mathrm{sin}\:^{\mathrm{5}} {x}+\mathrm{cos}\:^{\mathrm{3}} {x}\mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{sin}\:^{\mathrm{3}} {x}\mathrm{cos}\:^{\mathrm{2}} {x}+\mathrm{cos}\:^{\mathrm{5}} {x}\right)^{\mathrm{2}} }{dx} \\ $$
Question Number 195253 Answers: 2 Comments: 1
$${If}\:\mathrm{10sin}\:^{\mathrm{4}} {x}+\mathrm{15cos}\:^{\mathrm{4}} {x}=\mathrm{6}. \\ $$$${find}\:{the}\:{value}\:{of} \\ $$$$\mathrm{27cosec}\:^{\mathrm{6}} {x}+\mathrm{8sec}\:^{\mathrm{6}} {x} \\ $$$$ \\ $$
Question Number 195252 Answers: 1 Comments: 0
$$\int_{\boldsymbol{{spillover}}} \:\:\:\:\:\:\frac{{dx}}{\:\sqrt{{e}^{\mathrm{5}{x}} }\:\sqrt{\left({e}^{\mathrm{2}{x}} +{e}^{−\mathrm{2}{x}} \right)^{\mathrm{3}} }} \\ $$
Question Number 195251 Answers: 0 Comments: 1
$${If}\:\:{x}^{\left[\mathrm{16}\left(\mathrm{log}\:_{\mathrm{5}} {x}\right)^{\mathrm{3}} −\mathrm{68log}\:_{\mathrm{5}} {x}\right]} =\mathrm{5}^{−\mathrm{16}} \: \\ $$$$\:{then}\:{Find}\:{the}\:{the}\:{product}\:{of}\:{x} \\ $$$$ \\ $$
Question Number 195248 Answers: 0 Comments: 3
Question Number 195229 Answers: 0 Comments: 9
$${below}\:{equestion}\:{is}\:{show}\:\:{elips}\:{and} \\ $$$${hypharabollah} \\ $$$$\frac{{x}^{\mathrm{2}} }{{cos}\mathrm{3}}+\frac{{y}^{\mathrm{2}} }{{sin}\mathrm{3}}=\mathrm{1} \\ $$
Question Number 195227 Answers: 0 Comments: 0
$$ \\ $$$$\alpha_{\mathrm{1}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{2}} {\overset{{n}} {\prod}}\left(\alpha_{\mathrm{1}} −\alpha_{{i}} \right)}\right]+\underset{{j}=\mathrm{2}} {\overset{{n}} {\sum}}\left(\alpha_{{j}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\prod}}\left({x}−\alpha_{{i}} \right)\underset{{i}={j}+\mathrm{1}} {\overset{{n}} {\prod}}\left({x}−\alpha_{{j}} \right)}{\underset{{i}=\mathrm{1}} {\overset{{j}−\mathrm{1}} {\prod}}\left(\alpha_{{j}} −\alpha_{{i}} \right)\underset{{i}={j}+\mathrm{1}} {\overset{{n}} {\prod}}\left(\alpha_{{j}} −\alpha_{{i}} \right)}\right]+\alpha_{{n}} ^{\mathrm{3}} \left[\frac{\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left({x}−\alpha_{{i}} \right)}{\underset{{i}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\alpha_{{n}} −\alpha_{{i}} \right)}\right]−{x}^{\mathrm{3}} =\mathrm{0}\right. \\ $$$${solve}\:{for}\:{x}\:.\:\:\:\:\:\:\:\:\:\:\:\:\left[\:{where}\:{n}\geqslant\mathrm{5}\:\right] \\ $$
Question Number 195194 Answers: 2 Comments: 0
Question Number 195175 Answers: 1 Comments: 0
Question Number 195124 Answers: 1 Comments: 0
Question Number 195122 Answers: 0 Comments: 0
Pg 60 Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68 Pg 69
Terms of Service
Privacy Policy
Contact: info@tinkutara.com