Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 64

Question Number 197419    Answers: 1   Comments: 0

Question Number 197409    Answers: 1   Comments: 4

Question Number 197393    Answers: 1   Comments: 0

Question Number 197360    Answers: 1   Comments: 0

Find: ∫_0 ^( ∞) sin^2 ( (√x) ) e^(−x) dx = ?

$$\mathrm{Find}: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:\mathrm{sin}^{\mathrm{2}} \:\left(\:\sqrt{\mathrm{x}}\:\right)\:\mathrm{e}^{−\boldsymbol{\mathrm{x}}} \:\mathrm{dx}\:=\:? \\ $$

Question Number 197312    Answers: 1   Comments: 0

(((log_2 20)^2 −(log_2 5)^2 )/(log_2 10))=?

$$\frac{\left({log}_{\mathrm{2}} \mathrm{20}\right)^{\mathrm{2}} −\left({log}_{\mathrm{2}} \mathrm{5}\right)^{\mathrm{2}} }{{log}_{\mathrm{2}} \mathrm{10}}=? \\ $$

Question Number 197275    Answers: 1   Comments: 0

how do i prove this, help please. ∣((x^2 −2x−3)/(x^2 +2x+4))∣≤(5/4),∣x∣≤2

$$ \\ $$$$\:{how}\:{do}\:{i}\:{prove}\:{this},\:{help}\:{please}. \\ $$$$\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}\mid\leqslant\frac{\mathrm{5}}{\mathrm{4}},\mid{x}\mid\leqslant\mathrm{2} \\ $$$$ \\ $$$$ \\ $$

Question Number 197248    Answers: 0   Comments: 3

a,b,c∈R ((a + 2b − 3ac)/(3ac)) = ((a + 4b − bc)/b) Find: ((2b)/a) − ((3a)/b)

$$\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{R} \\ $$$$\frac{\mathrm{a}\:+\:\mathrm{2b}\:−\:\mathrm{3ac}}{\mathrm{3ac}}\:\:=\:\:\frac{\mathrm{a}\:+\:\mathrm{4b}\:−\:\mathrm{bc}}{\mathrm{b}} \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{2b}}{\mathrm{a}}\:−\:\frac{\mathrm{3a}}{\mathrm{b}} \\ $$

Question Number 197171    Answers: 1   Comments: 0

2^(log_3 (x^2 +1)) +2×(x^2 +1)^(log_3 2) =12 ⇒x=?

$$\mathrm{2}^{{log}_{\mathrm{3}} \left({x}^{\mathrm{2}} +\mathrm{1}\right)} +\mathrm{2}×\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{{log}_{\mathrm{3}} \mathrm{2}} \:=\mathrm{12} \\ $$$$\Rightarrow{x}=? \\ $$$$ \\ $$

Question Number 197125    Answers: 1   Comments: 1

Question Number 197064    Answers: 2   Comments: 0

Question Number 197034    Answers: 1   Comments: 0

Question Number 197003    Answers: 0   Comments: 0

Question Number 197002    Answers: 0   Comments: 1

Question Number 196964    Answers: 2   Comments: 0

Question Number 196893    Answers: 1   Comments: 0

Question Number 196885    Answers: 2   Comments: 0

Question Number 196872    Answers: 1   Comments: 0

Let ξ be a positive Root of x^2 −2023x−1 Define a sequence ϕ_i such That ϕ_0 =1 ϕ_(n+1) =⌊ϕ_n ξ⌋, find The Remainder When ϕ_(2023 ) is divided by (√ϕ_2 )

$${Let}\:\xi\:{be}\:{a}\:{positive}\:{Root}\:{of}\:{x}^{\mathrm{2}} −\mathrm{2023}{x}−\mathrm{1} \\ $$$${Define}\:{a}\:{sequence}\:\varphi_{{i}} \:{such}\:{That}\:\varphi_{\mathrm{0}} =\mathrm{1} \\ $$$$\varphi_{{n}+\mathrm{1}} =\lfloor\varphi_{{n}} \xi\rfloor,\:{find}\:{The}\:{Remainder}\:{When}\:\varphi_{\mathrm{2023}\:} {is}\:{divided}\:{by}\:\sqrt{\varphi_{\mathrm{2}} } \\ $$

Question Number 196870    Answers: 1   Comments: 0

let b_i ∧ a_i >0 where i∈{1,2,3,...,n}& Σ_(i=1) ^n (b_i )=λ Prove that ((λ−(b_1 +b_2 ))/((b_1 +b_2 )))(a_1 +a_2 )+((λ−(b_1 +b_3 ))/((b_1 +b_3 )))(a_1 +a_3 )+....+((λ−(b_2 +b_3 ))/((b_2 +b_3 )))(a_2 +a_3 )+...((λ−(b_(n−1) +b_n ))/((b_(n−1) +b_n )))(a_(n−1) +a_n ) ≥(√(((n(n−1)(n−2)^2 )/4)×ΣΣ_(1≤i<j≤n) (a_i a_j )))

$${let}\:{b}_{{i}} \wedge\:{a}_{{i}} >\mathrm{0}\:{where}\:{i}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},...,{n}\right\}\&\:\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left({b}_{{i}} \right)=\lambda\:{Prove}\:{that} \\ $$$$\frac{\lambda−\left({b}_{\mathrm{1}} +{b}_{\mathrm{2}} \right)}{\left({b}_{\mathrm{1}} +{b}_{\mathrm{2}} \right)}\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right)+\frac{\lambda−\left({b}_{\mathrm{1}} +{b}_{\mathrm{3}} \right)}{\left({b}_{\mathrm{1}} +{b}_{\mathrm{3}} \right)}\left({a}_{\mathrm{1}} +{a}_{\mathrm{3}} \right)+....+\frac{\lambda−\left({b}_{\mathrm{2}} +{b}_{\mathrm{3}} \right)}{\left({b}_{\mathrm{2}} +{b}_{\mathrm{3}} \right)}\left({a}_{\mathrm{2}} +{a}_{\mathrm{3}} \right)+...\frac{\lambda−\left({b}_{{n}−\mathrm{1}} +{b}_{{n}} \right)}{\left({b}_{{n}−\mathrm{1}} +{b}_{{n}} \right)}\left({a}_{{n}−\mathrm{1}} +{a}_{{n}} \right) \\ $$$$\geqslant\sqrt{\frac{{n}\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{4}}×\underset{\mathrm{1}\leqslant{i}<{j}\leqslant{n}} {\Sigma\Sigma}\left({a}_{{i}} {a}_{{j}} \right)} \\ $$$$ \\ $$

Question Number 196861    Answers: 0   Comments: 0

Question Number 196860    Answers: 0   Comments: 0

Question Number 196815    Answers: 1   Comments: 0

!6×(((!5+9!!!!!+7!!!−16))^(1/4) /(!10))=?

$$!\mathrm{6}×\frac{\sqrt[{\mathrm{4}}]{!\mathrm{5}+\mathrm{9}!!!!!+\mathrm{7}!!!−\mathrm{16}}}{!\mathrm{10}}=? \\ $$

Question Number 196728    Answers: 1   Comments: 1

Question Number 196730    Answers: 0   Comments: 0

Question Number 196714    Answers: 3   Comments: 0

Question Number 196704    Answers: 0   Comments: 0

Question Number 196693    Answers: 0   Comments: 0

And If I want to study an abstract algebra what book would you recommend and are there any prequesties

$$ \\ $$And If I want to study an abstract algebra what book would you recommend and are there any prequesties

  Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66      Pg 67      Pg 68   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com