Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 64
Question Number 188704 Answers: 1 Comments: 0
Question Number 188660 Answers: 2 Comments: 0
$${solve}\:{x}^{\mathrm{4}} +\mathrm{4}{x}=\mathrm{1} \\ $$
Question Number 188653 Answers: 0 Comments: 1
$$\mathrm{In}\:\mathrm{how}\:\mathrm{many}\:\mathrm{different}\:\mathrm{ways}\:\mathrm{can}\:\mathrm{the} \\ $$$$\mathrm{letters}\:\mathrm{of}\:\mathrm{the}\:\mathrm{word}\:\mathrm{ABRAKADABRA} \\ $$$$\mathrm{be}\:\mathrm{arranged}? \\ $$
Question Number 188648 Answers: 1 Comments: 0
Question Number 188647 Answers: 0 Comments: 1
Question Number 188646 Answers: 2 Comments: 0
Question Number 188619 Answers: 0 Comments: 1
Question Number 188587 Answers: 0 Comments: 0
Question Number 188572 Answers: 0 Comments: 3
Question Number 188515 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{in}\:\:{A}\overset{\Delta} {{B}C}\:\::\:\:\:{a}=\mathrm{3}\:\:,\:\:{b}=\mathrm{6}\:\:,\:\:{c}=\mathrm{7} \\ $$$$\:\:\: \\ $$$$\: \\ $$$$\:\:\:\:{find}\:\:{the}\:{value}\:\:{of}\:: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:{E}\:=\:\left({a}+{b}\:\right){cos}\left({C}\right)\:+\:\left({b}+{c}\right){cos}\left({A}\right)+\:\left({a}+{c}\:\right){cos}\left({B}\right)=?\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\: \\ $$
Question Number 188508 Answers: 2 Comments: 0
Question Number 188482 Answers: 1 Comments: 0
$$\mathrm{512}{x}^{\mathrm{1}−{x}^{−\mathrm{3}} } =−\mathrm{1} \\ $$$${find}\:\:{volue}\:\:{of}\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left({x}^{\mathrm{2}} \right)^{{n}} =? \\ $$
Question Number 188430 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\mathrm{2}\lfloor\:{x}\:\rfloor\:−\:\lfloor\:−{x}\:\rfloor\:=\mathrm{4} \\ $$$$\:\:\:−−−− \\ $$$$\:\:{if}\:\:{x}\in\mathbb{Z}\:\Rightarrow\:\:\mathrm{2}{x}\:+{x}\:=\:\mathrm{4}\:\Rightarrow\:{x}=\frac{\mathrm{4}}{\mathrm{3}}\:\:,{impossible} \\ $$$$\:\:{if}\:{x}\notin\:\mathbb{Z}\:\overset{\lfloor−{x}\rfloor=−\lfloor{x}\rfloor−\mathrm{1}} {\Rightarrow}\mathrm{2}\lfloor{x}\rfloor+\lfloor{x}\rfloor=\mathrm{3} \\ $$$$\:\:\:\:\:\Rightarrow\:\lfloor\:{x}\:\rfloor=\:\mathrm{1}\:\Rightarrow\:\:\mathrm{1}\leqslant\:{x}\:<\:\mathrm{2}\:\:\:\:\overset{{x}\neq\mathrm{1}} {\Rightarrow}\:{x}\in\:\left(\mathrm{1}\:,\:\mathrm{2}\right)\:\:\:\checkmark \\ $$$$ \\ $$
Question Number 188407 Answers: 3 Comments: 0
$${xf}\left({x}\right)\:=\:{f}\left({x}\:+\:\mathrm{2}\right) \\ $$$${f}\left(\mathrm{2}\right)\:=\:\mathrm{2} \\ $$$${f}\left(\mathrm{8}\right)\:=\:?\: \\ $$
Question Number 188379 Answers: 0 Comments: 0
Question Number 189462 Answers: 0 Comments: 0
Question Number 188366 Answers: 1 Comments: 0
$${xlnx}=\mathrm{7}\:\:\:\:\: \\ $$$${x}? \\ $$
Question Number 188536 Answers: 2 Comments: 0
$$ \\ $$$$\:\:\:\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{equation}}; \\ $$$$\:\:\:\:\:\:\:\left.\begin{matrix}{\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:−\:\boldsymbol{{z}}\:=\mathrm{5}}\\{\boldsymbol{{z}}\:−\:\boldsymbol{{yx}}\:=\:\mathrm{7}}\\{\boldsymbol{{z}}\:=\:\mathrm{1}\:+\:\boldsymbol{{x}}}\end{matrix}\right\}\:\:\boldsymbol{{x}};\boldsymbol{{y}};\boldsymbol{{z}}\:=??\:\:\:\:\:\: \\ $$$$ \\ $$
Question Number 188535 Answers: 1 Comments: 0
Question Number 188343 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\Omega\:=\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\left(\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}\:-\:\frac{\mathrm{5}\:-\:\sqrt{\mathrm{25}\:-\:\mathrm{x}^{\mathrm{2}} }}{\mathrm{x}}\:\right)^{\frac{\mathrm{5}\boldsymbol{\mathrm{n}}}{\boldsymbol{\mathrm{x}}}} \:\right) \\ $$
Question Number 188286 Answers: 1 Comments: 0
$${when}\:\:\:\:\:\:{sin}\left({x}\right)+{cos}\left({x}\right)={a} \\ $$$${find}\:\:\:\:\:\:\:\:\:{sec}\left({x}\right)+{csc}\left({x}\right)=? \\ $$
Question Number 188280 Answers: 0 Comments: 2
$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+.....\:=\:−\frac{\mathrm{1}}{\mathrm{12}} \\ $$
Question Number 188270 Answers: 1 Comments: 1
Question Number 188263 Answers: 0 Comments: 0
Question Number 188262 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{solve}}\:\boldsymbol{{the}}\:\boldsymbol{{equation}};\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\left.\begin{matrix}{\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:+\boldsymbol{{z}}\:=\:\:\mathrm{30}\sqrt{\mathrm{2}}}\\{\boldsymbol{{x}}\:−\:\boldsymbol{{y}}\:−\:\boldsymbol{{z}}\:=\:\mathrm{7},\mathrm{5}}\\{\boldsymbol{{x}}\:+\:\boldsymbol{{y}}\:−\:\boldsymbol{{z}}\:=\:\sqrt{\mathrm{22}}}\end{matrix}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}\:;\:\boldsymbol{{y}}\:;\:\boldsymbol{{z}}\:=\:?? \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:{they}\:{form}\:{funny}\:{positions}\: \\ $$$$ \\ $$
Question Number 188327 Answers: 3 Comments: 0
$${if}\:{the}\:{roots}\:{of}\:\:\mathrm{2}{x}^{\mathrm{2}} \:−{xn}\:=\:\mathrm{2}{x}\:+\:{m}\:\:{is}\:\mathrm{5}, \\ $$$$\:{then}\:{find}\::\:\mathrm{4}{n}\:+\:{m}\:−\:\mathrm{5}\: \\ $$$$\: \\ $$
Pg 59 Pg 60 Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67 Pg 68
Terms of Service
Privacy Policy
Contact: info@tinkutara.com