Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 63
Question Number 189269 Answers: 1 Comments: 0
Question Number 189242 Answers: 0 Comments: 0
Question Number 189212 Answers: 0 Comments: 0
Question Number 189208 Answers: 2 Comments: 0
Question Number 189201 Answers: 1 Comments: 0
$$\mathrm{In}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\sqrt{\mathrm{2}}\:\mathrm{a}\:\mathrm{cos}\:\frac{\mathrm{B}}{\mathrm{2}}\:\mathrm{cos}\:\frac{\mathrm{C}}{\mathrm{2}}\:=\:\mathrm{s} \\ $$$$\Rightarrow\:\mathrm{sec}\:\left(\mathrm{2B}\right)\:+\:\mathrm{tan}\:\left(\mathrm{2B}\right)\:=\:\frac{\mathrm{c}\:+\:\mathrm{b}}{\mathrm{c}\:−\:\mathrm{b}} \\ $$
Question Number 189135 Answers: 2 Comments: 0
Question Number 189137 Answers: 0 Comments: 2
$$\mathrm{It}\:\mathrm{is}\:\mathrm{known}\:\mathrm{that}\:\:\mathrm{x}\:\:\mathrm{is}\:\mathrm{rational} \\ $$$$\mathrm{x}\:\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{\mathrm{28}\:+\:\mathrm{3}\sqrt{?}}}} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{dufference}\:\mathrm{of}\:\mathrm{possible}\:\mathrm{vaules} \\ $$$$\mathrm{of}\:\:\boldsymbol{\mathrm{x}} \\ $$
Question Number 189133 Answers: 1 Comments: 0
$$\mathrm{Convert}\:\mathrm{hexadecimal}\:\mathrm{number} \\ $$$$\mathrm{4}\:\mathrm{A}\:\mathrm{F}_{\mathrm{16}} \:\:\mathrm{to}\:\mathrm{decimal} \\ $$
Question Number 189131 Answers: 2 Comments: 0
Question Number 189124 Answers: 1 Comments: 0
Question Number 189132 Answers: 1 Comments: 0
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{system}\:\mathrm{of}\:\mathrm{equations}: \\ $$$$\begin{cases}{\mathrm{13a}+\mathrm{2b}+\mathrm{c}+\mathrm{6d}+\mathrm{2e}=\mathrm{96}}\\{\mathrm{5a}+\mathrm{9b}+\mathrm{2c}+\mathrm{7d}+\mathrm{3e}=\mathrm{75}}\\{\mathrm{7a}+\mathrm{8b}+\mathrm{17c}+\mathrm{11d}+\mathrm{7e}=\mathrm{99}}\\{\mathrm{3a}+\mathrm{3b}+\mathrm{3c}+\mathrm{d}+\mathrm{8e}=\mathrm{55}}\\{\mathrm{a}+\mathrm{7b}+\mathrm{6c}+\mathrm{4d}+\mathrm{9e}=\mathrm{79}}\end{cases} \\ $$
Question Number 189077 Answers: 0 Comments: 0
Question Number 189070 Answers: 1 Comments: 0
Question Number 189025 Answers: 0 Comments: 0
Question Number 189024 Answers: 0 Comments: 0
Question Number 189022 Answers: 3 Comments: 0
$${if}\:\left(\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }+{x}\right)\left(\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }+{y}\right)=\mathrm{1}\: \\ $$$${with}\:{x},{y}\:\in{R},\:{find}\:\left({x}+{y}\right)^{\mathrm{2}} =? \\ $$
Question Number 189013 Answers: 2 Comments: 0
$$\mathrm{Suppose}\:\left({G},\:\centerdot\:\right)\:\mathrm{and}\:\left({H},\:\ast\:\right)\:\mathrm{are}\:\mathrm{groups}. \\ $$$$\mathrm{Take}\:\mathrm{homomorphism}\:\phi\::\:{G}\:\rightarrow\:{H}. \\ $$$$\mathrm{Suppose}\:\exists{g}\in{G}\::\:\mid{g}\mid\:=\:{n},\:\mathrm{then}\:\mid\phi\left({g}\right)\mid\:\leqslant\:{n}. \\ $$$$\: \\ $$$$\mathrm{Does}\:\forall{g}\in{G},\:\mid{g}\mid\:=\:\mid\phi\left({g}\right)\mid\:\Rightarrow\:{G}\:\cong\:{H}\:? \\ $$
Question Number 188928 Answers: 0 Comments: 0
Question Number 188908 Answers: 1 Comments: 0
$${the}\:{radius}\:{of}\:{a}\:{circle}\:{is}\:\mathrm{12}{cmunits} \\ $$$${find}\:{the}\:{perimeter}\:{of}\:{a}\:{regular}\: \\ $$$${inscribed}\: \\ $$$${a}.\:{triangle} \\ $$$${b}.{heptagon} \\ $$$${c}.\:{decagon} \\ $$
Question Number 188898 Answers: 0 Comments: 0
$$\mathrm{In}\:\bigtriangleup\mathrm{ABC}\:\mathrm{holds}:\:\:\:\Sigma\:\frac{\mathrm{2}\:+\:\sqrt{\mathrm{3}}\:\mathrm{tan}\:\frac{\mathrm{B}}{\mathrm{2}}}{\mathrm{1}\:+\:\mathrm{3}\:\mathrm{tan}^{\mathrm{2}} \:\frac{\mathrm{A}}{\mathrm{2}}}\:\geqslant\:\frac{\mathrm{9}}{\mathrm{2}} \\ $$
Question Number 188879 Answers: 2 Comments: 3
$${Find}\:{the}\:{sum}\:{of}\:{all}\:{three}\:{digit}\:{numbers} \\ $$$${started}\:{with}\:{odd}\:{number}\:{when}\:{each}\:{digit} \\ $$$${are}\:{different}. \\ $$$$ \\ $$$${Please}\:{help}... \\ $$
Question Number 188864 Answers: 0 Comments: 0
Question Number 188786 Answers: 1 Comments: 1
Question Number 188776 Answers: 3 Comments: 1
$$\mathrm{Prove}\:\mathrm{that}\:{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{2}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{2} \\ $$$$\mathrm{for}\:\mathrm{any}\:{n}\in\mathbb{Z} \\ $$
Question Number 188774 Answers: 1 Comments: 0
Question Number 188753 Answers: 1 Comments: 0
$$\:{x}^{\mathrm{2}} \:−\:{y}^{\mathrm{2}} \:=\:\mathrm{2023}\:\:\:\:\:\:\:\:\:{x},\:{y}\:\in\:\mathrm{N} \\ $$$$\:\mathrm{H}{ow}\:{many}\:{pair}\:{of}\:\left({x},\:{y}\right) \\ $$
Pg 58 Pg 59 Pg 60 Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66 Pg 67
Terms of Service
Privacy Policy
Contact: info@tinkutara.com