let b_i ∧ a_i >0 where i∈{1,2,3,...,n}& Σ_(i=1) ^n (b_i )=λ Prove that
((λ−(b_1 +b_2 ))/((b_1 +b_2 )))(a_1 +a_2 )+((λ−(b_1 +b_3 ))/((b_1 +b_3 )))(a_1 +a_3 )+....+((λ−(b_2 +b_3 ))/((b_2 +b_3 )))(a_2 +a_3 )+...((λ−(b_(n−1) +b_n ))/((b_(n−1) +b_n )))(a_(n−1) +a_n )
≥(√(((n(n−1)(n−2)^2 )/4)×ΣΣ_(1≤i<j≤n) (a_i a_j )))
|