if f(x) = ((x^2 −(b+1)x+b)/(x^2 −(a+1)x+a)) (a≠b & a,b ∈ R ∼ {1})
can take all values except two values α & β
such that α+β = 0 then ∣((a^3 +b^3 −8)/(ab))∣ = ??
for {a_n } be a sequence of positive real numbers
such that a_1 =1 , a_(n+1) ^2 −2a_n a_(n+1) −a_n = 0 , ∀ n≥ 1
than the sum of series Σ_(n=1) ^∞ (a_n /3^(n ) ) lies in the interval
(A) (1,2] (B) (2,3] (C) (3,4] (D) (4,5]