Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 62
Question Number 198931 Answers: 2 Comments: 0
$${Find}\:{the}\:{value}\:{of}\:{t}:\: \\ $$$${t}\:=\:\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{9}}+\frac{\mathrm{3}}{\mathrm{27}}+.......+\frac{{n}}{\mathrm{3}^{{n}} }+..... \\ $$
Question Number 198919 Answers: 1 Comments: 1
$${Find}\:{the}\:{sum}\:{of}\:{the}\:{fourth}\:{powers}\:{of} \\ $$$${the}\:{roots}\:{of}\:{equation}: \\ $$$$\mathrm{7}{x}^{\mathrm{3}} −\mathrm{21}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{2}=\mathrm{0} \\ $$
Question Number 198903 Answers: 1 Comments: 1
$${Find}\:{the}\:{minimum}\:{value}\:{of}\: \\ $$$$\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}\:{for}\:{all}\:{positive}\:{real} \\ $$$${numbers} \\ $$
Question Number 198902 Answers: 2 Comments: 0
$${Given}\:{that}\:{k}^{\mathrm{2}} −\mathrm{3}{k}+\mathrm{5}=\mathrm{0},\:{determine} \\ $$$${the}\:{value}\:{of}\:{k}^{\mathrm{4}} −\mathrm{6}{k}^{\mathrm{3}} +\mathrm{9}{k}^{\mathrm{2}} −\mathrm{7} \\ $$
Question Number 198850 Answers: 1 Comments: 0
$$ \\ $$$$\mathrm{p}\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{p}\left(\mathrm{x}−\mathrm{1}\right)=\mathrm{4x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{10} \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=? \\ $$$$ \\ $$$$ \\ $$
Question Number 198814 Answers: 2 Comments: 0
$$\mathrm{Simplify}: \\ $$$$\frac{\left(\sqrt{\mathrm{x}\:+\:\mathrm{4}\:\sqrt{\mathrm{x}\:-\:\mathrm{4}}}\:+\:\sqrt{\mathrm{x}\:-\:\mathrm{4}\:\sqrt{\mathrm{x}\:-\:\mathrm{4}}}\right)\:\sqrt{\mathrm{x}\:-\:\mathrm{8}}}{\mathrm{4}\:\sqrt{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{12x}\:+\:\mathrm{32}}} \\ $$
Question Number 198813 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:{suppose}\:\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:{E}=\:\sqrt{\:\mathrm{9}\:+\:\mathrm{4}\:\left(\:\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\:\:{a}_{\:{k}} ^{\:\mathrm{2}} \:\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{is}\:\:{given} \\ $$$$\:\:\:\:\:{let}\:\:\:\:{a}_{\:{k}} \:=\:{a}_{{k}−\mathrm{1}} \:.\:\left({a}_{\:{k}−\mathrm{1}} \:+\mathrm{1}\right) \\ $$$$\:\:\:\:\:{and}\:\:\:{a}_{\mathrm{1}} \:=\mathrm{1}\:,\:\:\:{a}_{\:\mathrm{2}} \:=\:\mathrm{2}\:\:,\:{a}_{\:\mathrm{3}} =\:\mathrm{6}\:, \\ $$$$\:\:\:\:\:\:{a}_{\mathrm{4}} \:=\:\:\mathrm{42}\:\:\:,\:{a}_{\:\mathrm{5}} \:=\:\mathrm{1806}\:\:\:\:{and}\:\:{etc} \\ $$$$\:\:\:{find}\:{the}\:\:{value}\:\:{of}\:\:\:\:{E}\:=? \\ $$
Question Number 199092 Answers: 5 Comments: 0
$${Let}\:{the}\:{polynomial}\:{p}\left({x}\right)=\mathrm{5}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10} \\ $$$${have}\:{roots}\:{a},{b}\:{and}\:{c}.\:{What}\:{is}\:{the}\:{value} \\ $$$${of}\:\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}? \\ $$
Question Number 198772 Answers: 0 Comments: 1
$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$
Question Number 198754 Answers: 1 Comments: 0
Question Number 198647 Answers: 3 Comments: 1
Question Number 198575 Answers: 1 Comments: 3
Question Number 198559 Answers: 0 Comments: 0
Question Number 198558 Answers: 1 Comments: 1
Question Number 198644 Answers: 2 Comments: 2
Question Number 198519 Answers: 1 Comments: 0
$$\:\:\mathrm{Find}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{and}\:\mathrm{d}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\:\:\begin{cases}{\mathrm{abc}\:=\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{11}\right)}\\{\mathrm{abd}\:=\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{11}\right)\:}\\{\mathrm{acd}\:=\:\mathrm{3}\:\left(\mathrm{mod}\:\mathrm{11}\right)\:}\\{\mathrm{bcd}\:=\:\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{11}\right)\:}\end{cases} \\ $$
Question Number 198517 Answers: 0 Comments: 0
Question Number 198474 Answers: 2 Comments: 0
$$\mathrm{16000}\:=\:\frac{\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} }\: \\ $$$$\:\mathrm{x}=? \\ $$
Question Number 198460 Answers: 0 Comments: 0
$$\mathrm{In}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\Pi\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{a}}\:\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}}\right)\:\geqslant\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{3R}}\right)^{\mathrm{3}} \\ $$
Question Number 198449 Answers: 0 Comments: 2
Question Number 198447 Answers: 2 Comments: 5
$$\:\:\mathrm{Given}\:\mathrm{function}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{4567},\mathrm{321567}\right)=\:\mathrm{567}+\mathrm{321}=\mathrm{888}. \\ $$$$\:\:\mathrm{f}\left(\mathrm{32156},\mathrm{12062}\right)=\:\mathrm{156}+\mathrm{120}=\mathrm{276} \\ $$$$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\mathrm{f}\left(\frac{\mathrm{20}^{\mathrm{22}} }{\mathrm{21}}\:\right). \\ $$
Question Number 198439 Answers: 0 Comments: 4
Question Number 198435 Answers: 1 Comments: 0
Question Number 198431 Answers: 2 Comments: 0
$$\mathrm{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{f}\:\left(\mathrm{3x}\:−\:\mathrm{1}\right)\:=\:\mathrm{x}\:+\:\mathrm{5} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$
Question Number 198428 Answers: 0 Comments: 0
Question Number 198414 Answers: 0 Comments: 0
$$\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{3}{h}−{p}\right)^{\mathrm{2}} +\mathrm{3}{ph}=\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${and} \\ $$$$\frac{\left(\mathrm{3}{h}−{p}\right)^{\mathrm{3}} }{\mathrm{16}}+{p}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)={h}^{\mathrm{3}} −{h}−{c} \\ $$$${Find}\:\:{p}\:{and}\:{h}\:\:{in}\:{terms}\:{of}\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\centerdot \\ $$
Pg 57 Pg 58 Pg 59 Pg 60 Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66
Terms of Service
Privacy Policy
Contact: info@tinkutara.com