Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 62
Question Number 197960 Answers: 1 Comments: 0
$$\mathrm{determiner}\:\mathrm{le}\:\mathrm{total}\:\mathrm{de}\:\mathrm{nombres}\:\mathrm{de}\: \\ $$$$\mathrm{5}\:\mathrm{chiffres}\:\mathrm{comprises}\:\mathrm{entre}\:\mathrm{10000}\:\mathrm{et}\: \\ $$$$\mathrm{50000}\:\:\mathrm{divisibles}\:\mathrm{simultanement}\:\mathrm{par} \\ $$$$\mathrm{5}\:\mathrm{et}\:\mathrm{9}\:\:\: \\ $$$$\left(\mathrm{sans}\:\mathrm{utiliser}\:\mathrm{les}\:\mathrm{formules}\:\mathrm{d}\:\mathrm{arrangement}\right. \\ $$$$\left.\mathrm{et}\:\mathrm{de}\:\mathrm{combinaison}\right) \\ $$$$ \\ $$
Question Number 197951 Answers: 0 Comments: 0
$$\:\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{{n}}{{n}^{\mathrm{4}} +{n}^{\mathrm{2}} +\mathrm{1}}\:−\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{8}} +{n}^{\mathrm{4}} +\mathrm{1}}\:=\:? \\ $$
Question Number 197935 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}\right)!}\:=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{27}} \\ $$
Question Number 197922 Answers: 0 Comments: 1
Question Number 197895 Answers: 1 Comments: 0
$${Solve}\:{the}\:{equation}: \\ $$$${x}^{\mathrm{4}} \:−\:{x}^{\mathrm{3}} \:−\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}\:+\:\mathrm{2}\:=\:\mathrm{0} \\ $$
Question Number 197880 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{infinite}\:\mathrm{series} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{6}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{7}^{\mathrm{2}} \right)+ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{8}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{15}^{\mathrm{2}} \right)+........ \\ $$
Question Number 197876 Answers: 2 Comments: 1
Question Number 197860 Answers: 3 Comments: 0
$$\:\:\:\:\frac{\mathrm{2}^{\mathrm{17}} +\mathrm{2}^{\mathrm{16}} +\mathrm{2}^{\mathrm{15}} +\ldots+\mathrm{1}}{\mathrm{2}^{\mathrm{8}} +\mathrm{2}^{\mathrm{7}} +\mathrm{2}^{\mathrm{6}} +\ldots+\mathrm{1}}\:=\:?\: \\ $$
Question Number 197843 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{Exercice}}\:\:\mathrm{2} \\ $$
Question Number 197838 Answers: 2 Comments: 0
Question Number 197794 Answers: 1 Comments: 0
$$\:\:\:\:\mathrm{if}\:\mathrm{x}\:\:\:=\:\:\:\mathrm{log}\:\mathrm{tan}\left(\frac{\pi}{\mathrm{4}}+\frac{\mathrm{y}}{\mathrm{2}}\right),\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\:\:\:\:\:\mathrm{y}\:\:\:\:=\:\:\:−{i}\mathrm{log}\:\mathrm{tan}\left(\frac{{ix}}{\mathrm{2}}\:+\:\frac{\pi}{\mathrm{4}}\right)\:\:\:\:\:\mathrm{here}\:{i}\:\:=\:\sqrt{−\mathrm{1}} \\ $$
Question Number 197784 Answers: 1 Comments: 0
$$\:\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{2}+\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\:\left(\mathrm{1}+\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\right)}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{x}+\mathrm{5}+\mathrm{6}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\left(\mathrm{1}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{3}}\:\right)}\:=\:\mathrm{5} \\ $$
Question Number 197708 Answers: 1 Comments: 0
$$ \\ $$$${x}^{{a}} ={x}^{{a}+\mathrm{4}} \:\:\mathrm{where}\:{a}\in\mathbb{Z} \\ $$$$\mathrm{solve}\:\mathrm{for}\:{x}\:\mathrm{by}\:\mathrm{showing}\:\mathrm{steps} \\ $$
Question Number 197706 Answers: 1 Comments: 0
Question Number 197623 Answers: 1 Comments: 1
$$\mathrm{x},\mathrm{y}\in\mathbb{N} \\ $$$$\mathrm{162}\:\centerdot\:\mathrm{x}^{\mathrm{2}} \:=\:\mathrm{y}^{\mathrm{3}} \\ $$$$\mathrm{min}\left(\mathrm{x}+\mathrm{y}\right)=? \\ $$
Question Number 197618 Answers: 1 Comments: 0
Question Number 197609 Answers: 2 Comments: 0
$$\:\:\:\frac{{x}+\mathrm{3}}{\mathrm{2022}}\:+\:\frac{{x}+\mathrm{2}}{\mathrm{2023}}\:+\:\frac{{x}+\mathrm{1}}{\mathrm{2024}}\:+\:\frac{{x}}{\mathrm{2025}}\:=\:−\mathrm{4} \\ $$
Question Number 197567 Answers: 1 Comments: 0
Question Number 197530 Answers: 2 Comments: 0
$$\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2}}\mathrm{f}''\left(\mathrm{x}\right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=? \\ $$
Question Number 197476 Answers: 1 Comments: 7
$$ \\ $$$$\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\:\frac{\mathrm{1}}{{x}+\mathrm{1}}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{4}}{{x}^{\mathrm{4}} +\mathrm{1}}+.........+\frac{\mathrm{2}^{{n}} }{{x}^{\mathrm{2}^{{n}} } +\mathrm{1}}\:\:=\:?? \\ $$
Question Number 197464 Answers: 1 Comments: 0
Question Number 197455 Answers: 1 Comments: 0
$${f}\left({x}\right)=\frac{\mathrm{2}{x}+\mathrm{6}}{\mathrm{2}}+\mathrm{6}−{x} \\ $$$${g}\left({x}\right)=\sqrt{{x}^{\mathrm{99}} +{x}^{\mathrm{98}} +{x}^{\mathrm{97}} +.....+{x}} \\ $$$${f}\left({g}\left(\mathrm{1}\right)\right)+{f}\left({g}\left(\mathrm{2}\right)\right)+.........+{f}\left({g}\left(\mathrm{100}\right)\right)=? \\ $$
Question Number 197422 Answers: 2 Comments: 0
Question Number 197419 Answers: 1 Comments: 0
Question Number 197409 Answers: 1 Comments: 4
Question Number 197393 Answers: 1 Comments: 0
Pg 57 Pg 58 Pg 59 Pg 60 Pg 61 Pg 62 Pg 63 Pg 64 Pg 65 Pg 66
Terms of Service
Privacy Policy
Contact: info@tinkutara.com