Question and Answers Forum |
AlgebraQuestion and Answers: Page 62 |
![]() |
![]() |
![]() |
Find: ((((25)/(42)) − (5/(16)) + ((10)/9) − (2/3))/((3/8) + (4/5) − (5/7) − (4/3))) = ? |
![]() |
Given { ((A=(((p^2 +q^2 +r^2 )^2 )/((pq)^2 +(pr)^2 +(qr)^2 )))),((B=((q^2 −pr)/(p^2 +q^2 +r^2 )) )) :} If p+q+r=0 then A^2 −4B=? |
(1/a) + (1/b) + (1/c) = (1/(a + b + c)) . Prove that (1/a^5 ) + (1/b^5 ) + (1/c^5 ) = (1/(a^5 + b^5 + c^5 )) = (1/((a + b + c)^5 )) |
Question if “k” is odd & A=1^k +2^k +...+n^(k ) & B=1+2+...+n prove that : B ∣ A |
![]() |
Algebra (1 ) G, is a group and o(G ) = p^( 2) . prove that G is an abelian group. hint: ( p is prime number ) −−−−−−−−−−−−− |
Simplify (√(2(1+(√(4+(((2017^4 −1)/(2017^2 )))^2 ))))) is .... |
why “ 200!<100^(200) ” ? |
Solve the equation x^4 − 2x^3 + 4x^2 + 6x − 21 = 0, Given that the sum of two of its roots is zero |
Solve for x x_i −x+(2cx−cb)(y_i +cx^2 −cbx)=0 the following is true for this equaition i)c>0 ii)b>0 iii)there is only one real solution |
![]() |
![]() |
If α, β and γ are the roots of x^3 + px + q = 0, find Σα^4 . |
2^x^x^x =2^(√2) x=? |
prove that (x^2 +a^2 )^4 = (x^4 −6x^2 a^2 +a^4 )^2 +(4x^3 a−4xa^3 )^2 |
Find: (1/2) + (3/2^3 ) + (5/2^5 ) + (7/2^7 ) + ... |
Find: (7/2) + ((77)/(22)) + ((777)/(222)) + ((7777)/(2222)) +...+ ((77777777)/(22222222)) |
Question let x=<a_n a_(n−1) ...a_1 a_0 > ∈N ; a_0 ≠0 & y=<a_n a_(n−1) ...a_1 > ∈N be two natural numbers such that (x/y)∈N find the number “ x ” ? |
when ((√2)+1)^7 =(√(57125))+(√(57124)) then ((√2)−1)^7 =? |
Q1 ∴ x=<1a_1 a_2 ...a_n >∈N & y=<a_1 a_2 ...a_n 1>∈N if y=3x then , find the smallest value of x Q2 ∴ with the above conditions ,what other values can be placed besides the number “ 1 ” |
Let {H_α } ∈ Ω, be a family of subgroup of a group G, then prove that ∩_(α ∈ Ω) H_α . |
prove it : times_n ; (√(4+(√(4+(√(4+...+(√4))))) )) < 3 |