Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 62

Question Number 193296    Answers: 2   Comments: 1

If a^2 + b^2 + c^2 = 16, x^2 + y^2 + z^2 = 25 and ax + by + cz = 20 then what is the value of ((a + b + c)/(x + y + z)) ?

$$\mathrm{If}\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \:+\:{c}^{\mathrm{2}} \:=\:\mathrm{16},\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \:=\:\mathrm{25} \\ $$$$\mathrm{and}\:{ax}\:+\:{by}\:+\:{cz}\:=\:\mathrm{20}\:\mathrm{then}\:\mathrm{what}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\frac{{a}\:+\:{b}\:+\:{c}}{{x}\:+\:{y}\:+\:{z}}\:? \\ $$

Question Number 193284    Answers: 1   Comments: 0

6y −2xy = 4 8z − yz = 9 10x − 4xz = 8 find x+y +z = ?

$$\:\:\:\mathrm{6}{y}\:−\mathrm{2}{xy}\:=\:\mathrm{4} \\ $$$$\:\:\:\:\mathrm{8}{z}\:−\:{yz}\:=\:\mathrm{9} \\ $$$$\:\:\:\mathrm{10}{x}\:−\:\mathrm{4}{xz}\:=\:\mathrm{8}\: \\ $$$${find}\:{x}+{y}\:+{z}\:=\:? \\ $$

Question Number 193238    Answers: 1   Comments: 0

s=a+b+c+d+..... number terms :n {a;b;c;d.....}>0 then E=s/(s−a)+s/(s−b)+s/s−c)+.... a) E>=n^2 b)E>=n^2 /(n−1) c) E>=n/(n+1) d) E>=n^2 /(n+1) e) E>=n^2 −1

$${s}={a}+{b}+{c}+{d}+..... \\ $$$${number}\:{terms}\::{n} \\ $$$$\left\{{a};{b};{c};{d}.....\right\}>\mathrm{0} \\ $$$$\left.{then}\:{E}={s}/\left({s}−{a}\right)+{s}/\left({s}−{b}\right)+{s}/{s}−{c}\right)+.... \\ $$$$\left.{a}\left.\right)\:{E}>={n}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:{b}\right){E}>={n}^{\mathrm{2}} /\left({n}−\mathrm{1}\right) \\ $$$$\left.{c}\left.\right)\:{E}>={n}/\left({n}+\mathrm{1}\right)\:\:\:\:\:\:{d}\right)\:{E}>={n}^{\mathrm{2}} /\left({n}+\mathrm{1}\right) \\ $$$$\left.{e}\right)\:{E}>={n}^{\mathrm{2}} −\mathrm{1} \\ $$$$ \\ $$$$ \\ $$

Question Number 193221    Answers: 1   Comments: 0

find the cube root of 9ab^2 + (b^2 +24a^2 )(√(b^2 −3a^2 ))

$$ \\ $$$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{cube}}\:\boldsymbol{{root}}\:\boldsymbol{{of}} \\ $$$$\mathrm{9}\boldsymbol{{ab}}^{\mathrm{2}} \:+\:\left(\boldsymbol{{b}}^{\mathrm{2}} +\mathrm{24}\boldsymbol{{a}}^{\mathrm{2}} \right)\sqrt{\boldsymbol{{b}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{{a}}^{\mathrm{2}} } \\ $$

Question Number 193213    Answers: 3   Comments: 0

((a^m /a^(−n) ))^(m−n)

$$\left(\frac{{a}^{{m}} }{{a}^{−{n}} }\right)^{{m}−{n}} \\ $$

Question Number 193197    Answers: 0   Comments: 0

(−(3/4))^(666) mod1000=?

$$\left(−\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{666}} {mod}\mathrm{1000}=? \\ $$

Question Number 193195    Answers: 0   Comments: 0

(−3)^(666) mod1000=?

$$\left(−\mathrm{3}\right)^{\mathrm{666}} {mod}\mathrm{1000}=? \\ $$

Question Number 193182    Answers: 1   Comments: 0

(x^2 /(2^2 −1^2 ))+(y^2 /(2^2 −3^2 ))+(z^2 /(2^2 −5^2 ))+(w^2 /(2^2 −7^2 ))=1 (x^2 /(4^2 −1^2 ))+(y^2 /(4^2 −3^2 ))+(z^2 /(4^2 −5^2 ))+(w^2 /(4^2 −7^2 ))=1 (x^2 /(6^2 −1^2 ))+(y^2 /(6^2 −3^2 ))+(z^2 /(6^2 −5^2 ))+(w^2 /(6^2 −7^2 ))=1 (x^2 /(8^2 −1^2 ))+(y^2 /(8^2 −3^2 ))+(z^2 /(8^2 −5^2 ))+(w^2 /(8^2 −7^2 ))=1 find (x^2 +y^2 +z^2 +w^2 ).

$$ \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{4}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{6}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{x}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{1}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }+\frac{{z}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }+\frac{{w}^{\mathrm{2}} }{\mathrm{8}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }=\mathrm{1}\: \\ $$$$ \\ $$$${find}\:\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{w}^{\mathrm{2}} \right). \\ $$

Question Number 193087    Answers: 1   Comments: 0

Question Number 193130    Answers: 3   Comments: 1

Solve for x x^2 −c=(√(c−x))

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{2}} −{c}=\sqrt{{c}−{x}} \\ $$

Question Number 193049    Answers: 0   Comments: 0

Question Number 193045    Answers: 1   Comments: 0

what is the HCF of 8k+1 and 9k ? where k ∈ Z^+

$${what}\:{is}\:{the}\:{HCF}\:{of}\: \\ $$$$\mathrm{8}{k}+\mathrm{1}\:{and}\:\mathrm{9}{k}\:?\:{where}\:{k}\:\in\:\mathbb{Z}^{+} \\ $$

Question Number 193026    Answers: 2   Comments: 0

Question Number 192958    Answers: 4   Comments: 0

Question Number 192957    Answers: 4   Comments: 2

bx^3 =10a^2 bx + 3a^3 y , ay^3 = 10ab^2 y + 3b^3 x solve for x and y in terms of (a , b) and solve for a and b in terms of (x , y )

$$ \\ $$$${bx}^{\mathrm{3}} =\mathrm{10}{a}^{\mathrm{2}} {bx}\:+\:\mathrm{3}{a}^{\mathrm{3}} {y}\:,\:{ay}^{\mathrm{3}} =\:\mathrm{10}{ab}^{\mathrm{2}} {y}\:+\:\mathrm{3}{b}^{\mathrm{3}} {x} \\ $$$${solve}\:{for}\:{x}\:{and}\:{y}\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\right) \\ $$$${and}\:{solve}\:{for}\:{a}\:{and}\:{b}\:{in}\:{terms}\:{of}\:\:\left({x}\:,\:{y}\:\right) \\ $$

Question Number 192942    Answers: 2   Comments: 1

Question Number 192937    Answers: 0   Comments: 0

Question Number 192936    Answers: 2   Comments: 0

Question Number 192928    Answers: 1   Comments: 0

2x^2 −6x+k = 0 where k<0 ((α/β) + (β/α))_(max) = ?

$$\mathrm{2}{x}^{\mathrm{2}} −\mathrm{6}{x}+{k}\:=\:\mathrm{0}\:{where}\:{k}<\mathrm{0}\: \\ $$$$\left(\frac{\alpha}{\beta}\:+\:\frac{\beta}{\alpha}\right)_{\mathrm{max}} \:=\:? \\ $$

Question Number 192925    Answers: 1   Comments: 0

Find: x = ? 1. 2^(x+1) + 0,5^(x−2) = 9 2. 4^(3x) = 12 3. 6^(x+2) = 18

$$\mathrm{Find}:\:\:\:\mathrm{x}\:=\:? \\ $$$$\mathrm{1}.\:\mathrm{2}^{\boldsymbol{\mathrm{x}}+\mathrm{1}} \:+\:\mathrm{0},\mathrm{5}^{\boldsymbol{\mathrm{x}}−\mathrm{2}} \:=\:\mathrm{9} \\ $$$$\mathrm{2}.\:\mathrm{4}^{\mathrm{3}\boldsymbol{\mathrm{x}}} \:=\:\mathrm{12} \\ $$$$\mathrm{3}.\:\mathrm{6}^{\boldsymbol{\mathrm{x}}+\mathrm{2}} \:=\:\mathrm{18} \\ $$

Question Number 192924    Answers: 2   Comments: 0

1•determiner: tan (x/2) en fonction de tan x 2•on donne tan x=(1/8) tan (x/2)=? 3• la valeur proche de x?

$$\mathrm{1}\bullet\mathrm{determiner}:\:\mathrm{tan}\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}\:\:\mathrm{en}\:\mathrm{fonction}\:\mathrm{de}\:\mathrm{tan}\:\boldsymbol{\mathrm{x}} \\ $$$$\mathrm{2}\bullet\mathrm{on}\:\mathrm{donne}\:\:\mathrm{tan}\:\boldsymbol{\mathrm{x}}=\frac{\mathrm{1}}{\mathrm{8}}\:\:\:\:\mathrm{tan}\:\frac{\boldsymbol{\mathrm{x}}}{\mathrm{2}}=? \\ $$$$\mathrm{3}\bullet\:\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{proche}\:\mathrm{de}\:\boldsymbol{\mathrm{x}}? \\ $$

Question Number 192917    Answers: 1   Comments: 0

Question Number 192914    Answers: 1   Comments: 0

x^2 (x^2 −1)=(1−(c/x))^3 +((c/x))^3

$${x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)=\left(\mathrm{1}−\frac{{c}}{{x}}\right)^{\mathrm{3}} +\left(\frac{{c}}{{x}}\right)^{\mathrm{3}} \\ $$

Question Number 192898    Answers: 0   Comments: 1

Solve for x x^3 −7x−2=0

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}^{\mathrm{3}} −\mathrm{7}{x}−\mathrm{2}=\mathrm{0} \\ $$

Question Number 192883    Answers: 1   Comments: 0

Question Number 192875    Answers: 2   Comments: 0

x^2 −yz=a^n y^2 −zx=b^n z^2 −xy=c^n find (x , y , z) in terms of (a , b , c)

$${x}^{\mathrm{2}} −{yz}={a}^{{n}} \\ $$$${y}^{\mathrm{2}} −{zx}={b}^{{n}} \\ $$$${z}^{\mathrm{2}} −{xy}={c}^{{n}} \\ $$$${find}\:\left({x}\:,\:{y}\:,\:{z}\right)\:{in}\:{terms}\:{of}\:\left({a}\:,\:{b}\:,\:{c}\right) \\ $$

  Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com