Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 62

Question Number 198517    Answers: 0   Comments: 0

Question Number 198474    Answers: 2   Comments: 0

16000 = (x^3 /((1−x)^2 )) x=?

$$\mathrm{16000}\:=\:\frac{\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} }\: \\ $$$$\:\mathrm{x}=? \\ $$

Question Number 198460    Answers: 0   Comments: 0

In △ABC holds: Π (1 + (1/a) tan (A/2)) ≥ (1 + (1/(3R)))^3

$$\mathrm{In}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\Pi\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{a}}\:\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}}\right)\:\geqslant\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{3R}}\right)^{\mathrm{3}} \\ $$

Question Number 198449    Answers: 0   Comments: 2

Question Number 198447    Answers: 2   Comments: 5

Given function f(4567,321567)= 567+321=888. f(32156,12062)= 156+120=276 find the value of f(((20^(22) )/(21)) ).

$$\:\:\mathrm{Given}\:\mathrm{function}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{4567},\mathrm{321567}\right)=\:\mathrm{567}+\mathrm{321}=\mathrm{888}. \\ $$$$\:\:\mathrm{f}\left(\mathrm{32156},\mathrm{12062}\right)=\:\mathrm{156}+\mathrm{120}=\mathrm{276} \\ $$$$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\mathrm{f}\left(\frac{\mathrm{20}^{\mathrm{22}} }{\mathrm{21}}\:\right). \\ $$

Question Number 198439    Answers: 0   Comments: 4

Question Number 198435    Answers: 1   Comments: 0

Question Number 198431    Answers: 2   Comments: 0

f : R → R f (3x − 1) = x + 5 Find: f(x) = ?

$$\mathrm{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{f}\:\left(\mathrm{3x}\:−\:\mathrm{1}\right)\:=\:\mathrm{x}\:+\:\mathrm{5} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$

Question Number 198428    Answers: 0   Comments: 0

Question Number 198414    Answers: 0   Comments: 0

(3/8)(3h−p)^2 +3ph=(3h^2 −1) and (((3h−p)^3 )/(16))+p(3h^2 −1)=h^3 −h−c Find p and h in terms of 0<c<(2/(3(√3)))∙

$$\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{3}{h}−{p}\right)^{\mathrm{2}} +\mathrm{3}{ph}=\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${and} \\ $$$$\frac{\left(\mathrm{3}{h}−{p}\right)^{\mathrm{3}} }{\mathrm{16}}+{p}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)={h}^{\mathrm{3}} −{h}−{c} \\ $$$${Find}\:\:{p}\:{and}\:{h}\:\:{in}\:{terms}\:{of}\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\centerdot \\ $$

Question Number 198372    Answers: 1   Comments: 1

(1/(1×5)) + (1/(4×8)) + (1/(7×11)) +(1/(10×14)) + …=?

$$\:\:\:\frac{\mathrm{1}}{\mathrm{1}×\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{4}×\mathrm{8}}\:+\:\frac{\mathrm{1}}{\mathrm{7}×\mathrm{11}}\:+\frac{\mathrm{1}}{\mathrm{10}×\mathrm{14}}\:+\:\ldots=? \\ $$

Question Number 198367    Answers: 0   Comments: 7

if f(x) = ((x^2 −(b+1)x+b)/(x^2 −(a+1)x+a)) (a≠b & a,b ∈ R ∼ {1}) can take all values except two values α & β such that α+β = 0 then ∣((a^3 +b^3 −8)/(ab))∣ = ??

$$\:\:\mathrm{if}\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{{x}^{\mathrm{2}} −\left({b}+\mathrm{1}\right){x}+{b}}{{x}^{\mathrm{2}} −\left({a}+\mathrm{1}\right){x}+{a}}\:\:\left({a}\neq{b}\:\&\:{a},{b}\:\in\:\mathbb{R}\:\sim\:\left\{\mathrm{1}\right\}\right) \\ $$$$\:\:\mathrm{can}\:\mathrm{take}\:\mathrm{all}\:\mathrm{values}\:\mathrm{except}\:\mathrm{two}\:\mathrm{values}\:\alpha\:\&\:\beta \\ $$$$\:\:\mathrm{such}\:\mathrm{that}\:\alpha+\beta\:=\:\mathrm{0}\:\:\mathrm{then}\:\mid\frac{\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} −\mathrm{8}}{\mathrm{ab}}\mid\:\:=\:\:?? \\ $$

Question Number 198311    Answers: 0   Comments: 0

Let {x_r }_(r=1) ^n be n positive real numbers Show That: (x_1 /(1+x_1 ^2 ))+(x_2 /(1+x_1 ^2 +x_2 ^2 ))+...+(x_n /(1+x_1 ^2 +x_2 ^2 +...+x_n ^2 ))<(√n)

$${Let}\:\left\{{x}_{{r}} \right\}_{{r}=\mathrm{1}} ^{{n}} {be}\:{n}\:{positive}\:{real}\:{numbers}\:{Show}\:{That}: \\ $$$$\frac{{x}_{\mathrm{1}} }{\mathrm{1}+{x}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{{x}_{\mathrm{2}} }{\mathrm{1}+{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} }+...+\frac{{x}_{{n}} }{\mathrm{1}+{x}_{\mathrm{1}} ^{\mathrm{2}} +{x}_{\mathrm{2}} ^{\mathrm{2}} +...+{x}_{{n}} ^{\mathrm{2}} }<\sqrt{{n}} \\ $$

Question Number 198304    Answers: 0   Comments: 7

for {a_n } be a sequence of positive real numbers such that a_1 =1 , a_(n+1) ^2 −2a_n a_(n+1) −a_n = 0 , ∀ n≥ 1 than the sum of series Σ_(n=1) ^∞ (a_n /3^(n ) ) lies in the interval (A) (1,2] (B) (2,3] (C) (3,4] (D) (4,5]

$$\:\:\:\mathrm{for}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}\:\mathrm{be}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\:\:\:\mathrm{such}\:\mathrm{that}\:\:\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:,\:\mathrm{a}_{\mathrm{n}+\mathrm{1}} ^{\mathrm{2}} −\mathrm{2a}_{\mathrm{n}} \mathrm{a}_{\mathrm{n}+\mathrm{1}} −\mathrm{a}_{\mathrm{n}} \:=\:\mathrm{0}\:,\:\forall\:\mathrm{n}\geqslant\:\mathrm{1} \\ $$$$\:\:\:\mathrm{than}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{a}_{\mathrm{n}} }{\mathrm{3}^{\mathrm{n}\:} }\:\:\mathrm{lies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval} \\ $$$$\:\:\left({A}\right)\:\:\left(\mathrm{1},\mathrm{2}\right]\:\:\:\:\left({B}\right)\:\:\left(\mathrm{2},\mathrm{3}\right]\:\:\:\:\left({C}\right)\:\:\left(\mathrm{3},\mathrm{4}\right]\:\:\:\:\left({D}\right)\:\:\left(\mathrm{4},\mathrm{5}\right] \\ $$$$\:\:\:\: \\ $$

Question Number 198295    Answers: 1   Comments: 0

x^3 −((81x−8))^(1/3) = 2x^2 −(4/3)x+2

$$\:\:\:\mathrm{x}^{\mathrm{3}} −\sqrt[{\mathrm{3}}]{\mathrm{81x}−\mathrm{8}}\:=\:\mathrm{2x}^{\mathrm{2}} −\frac{\mathrm{4}}{\mathrm{3}}\mathrm{x}+\mathrm{2}\: \\ $$

Question Number 198293    Answers: 1   Comments: 0

Question Number 198267    Answers: 3   Comments: 0

Find the real values of n: n^6 −n^3 =2

$${Find}\:{the}\:{real}\:{values}\:{of}\:{n}:\:{n}^{\mathrm{6}} −{n}^{\mathrm{3}} =\mathrm{2} \\ $$

Question Number 198266    Answers: 1   Comments: 0

Question Number 198252    Answers: 1   Comments: 2

Question Number 198244    Answers: 0   Comments: 0

Question Number 198243    Answers: 3   Comments: 0

find the sum of the first n terms from 1, 2+3, 4+5+6, 7+8+9+10, ...

$${find}\:{the}\:{sum}\:{of}\:{the}\:{first}\:{n}\:{terms}\:{from} \\ $$$$\mathrm{1},\:\mathrm{2}+\mathrm{3},\:\mathrm{4}+\mathrm{5}+\mathrm{6},\:\mathrm{7}+\mathrm{8}+\mathrm{9}+\mathrm{10},\:... \\ $$

Question Number 198197    Answers: 1   Comments: 1

please helpe sinz = 2. Find z

$${please}\:{helpe} \\ $$$${sinz}\:=\:\mathrm{2}.\:{Find}\:{z} \\ $$

Question Number 198175    Answers: 1   Comments: 0

Prove The following Functional equation: ζ(x,s)=((2Γ(1−s))/((2π)^((1−s)) )){sin(((πs)/2))Σ_(m=1) ^∞ [((cos(2πmx))/m^((1−s)) )]+cos(((πs)/2))Σ_(m=1) ^∞ [((sin(2πmx))/m^((1−s)) )]}

$${Prove}\:{The}\:{following}\:{Functional}\:{equation}: \\ $$$$\zeta\left({x},{s}\right)=\frac{\mathrm{2}\Gamma\left(\mathrm{1}−{s}\right)}{\left(\mathrm{2}\pi\right)^{\left(\mathrm{1}−{s}\right)} }\left\{{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{cos}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]+{cos}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{sin}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]\right\} \\ $$

Question Number 198166    Answers: 3   Comments: 0

if f(x)=x^2 +bx+c f(f(1))=f(f(2))=0 and f(1)≠f(2) find f(0)=?

$${if}\:{f}\left({x}\right)={x}^{\mathrm{2}} +{bx}+{c} \\ $$$${f}\left({f}\left(\mathrm{1}\right)\right)={f}\left({f}\left(\mathrm{2}\right)\right)=\mathrm{0}\:{and}\:{f}\left(\mathrm{1}\right)\neq{f}\left(\mathrm{2}\right) \\ $$$${find}\:{f}\left(\mathrm{0}\right)=? \\ $$

Question Number 198147    Answers: 1   Comments: 0

if a,x,y,b is an AP and a,p,q,b is a GP. prove that xy≥pq. (with a, b >0)

$${if}\:{a},{x},{y},{b}\:{is}\:{an}\:{AP}\:{and}\:{a},{p},{q},{b}\:{is}\:{a}\:{GP}. \\ $$$${prove}\:{that}\:{xy}\geqslant{pq}. \\ $$$$\left({with}\:{a},\:{b}\:>\mathrm{0}\right) \\ $$

Question Number 198132    Answers: 1   Comments: 0

Solve: ((log(x^2 +7x−5))/(log(x+2)))=2

$${Solve}: \\ $$$$\frac{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{\mathrm{x}}−\mathrm{5}\right)}{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)}=\mathrm{2} \\ $$

  Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com