Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 62

Question Number 198931    Answers: 2   Comments: 0

Find the value of t: t = (1/3)+(2/9)+(3/(27))+.......+(n/3^n )+.....

$${Find}\:{the}\:{value}\:{of}\:{t}:\: \\ $$$${t}\:=\:\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{9}}+\frac{\mathrm{3}}{\mathrm{27}}+.......+\frac{{n}}{\mathrm{3}^{{n}} }+..... \\ $$

Question Number 198919    Answers: 1   Comments: 1

Find the sum of the fourth powers of the roots of equation: 7x^3 −21x^2 +9x+2=0

$${Find}\:{the}\:{sum}\:{of}\:{the}\:{fourth}\:{powers}\:{of} \\ $$$${the}\:{roots}\:{of}\:{equation}: \\ $$$$\mathrm{7}{x}^{\mathrm{3}} −\mathrm{21}{x}^{\mathrm{2}} +\mathrm{9}{x}+\mathrm{2}=\mathrm{0} \\ $$

Question Number 198903    Answers: 1   Comments: 1

Find the minimum value of (a/(b+c))+(b/(c+a))+(c/(a+b)) for all positive real numbers

$${Find}\:{the}\:{minimum}\:{value}\:{of}\: \\ $$$$\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}\:{for}\:{all}\:{positive}\:{real} \\ $$$${numbers} \\ $$

Question Number 198902    Answers: 2   Comments: 0

Given that k^2 −3k+5=0, determine the value of k^4 −6k^3 +9k^2 −7

$${Given}\:{that}\:{k}^{\mathrm{2}} −\mathrm{3}{k}+\mathrm{5}=\mathrm{0},\:{determine} \\ $$$${the}\:{value}\:{of}\:{k}^{\mathrm{4}} −\mathrm{6}{k}^{\mathrm{3}} +\mathrm{9}{k}^{\mathrm{2}} −\mathrm{7} \\ $$

Question Number 198850    Answers: 1   Comments: 0

p(x+1)+p(x−1)=4x^2 −2x+10 p(x)=?

$$ \\ $$$$\mathrm{p}\left(\mathrm{x}+\mathrm{1}\right)+\mathrm{p}\left(\mathrm{x}−\mathrm{1}\right)=\mathrm{4x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{10} \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=? \\ $$$$ \\ $$$$ \\ $$

Question Number 198814    Answers: 2   Comments: 0

Simplify: ((((√(x + 4 (√(x - 4)))) + (√(x - 4 (√(x - 4))))) (√(x - 8)))/(4 (√(x^2 - 12x + 32))))

$$\mathrm{Simplify}: \\ $$$$\frac{\left(\sqrt{\mathrm{x}\:+\:\mathrm{4}\:\sqrt{\mathrm{x}\:-\:\mathrm{4}}}\:+\:\sqrt{\mathrm{x}\:-\:\mathrm{4}\:\sqrt{\mathrm{x}\:-\:\mathrm{4}}}\right)\:\sqrt{\mathrm{x}\:-\:\mathrm{8}}}{\mathrm{4}\:\sqrt{\mathrm{x}^{\mathrm{2}} \:-\:\mathrm{12x}\:+\:\mathrm{32}}} \\ $$

Question Number 198813    Answers: 1   Comments: 0

suppose that : E= (√( 9 + 4 ( Σ_(k=2) ^n a_( k) ^( 2) ))) is given let a_( k) = a_(k−1) . (a_( k−1) +1) and a_1 =1 , a_( 2) = 2 , a_( 3) = 6 , a_4 = 42 , a_( 5) = 1806 and etc find the value of E =?

$$ \\ $$$$\:\:\:\:\:{suppose}\:\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:{E}=\:\sqrt{\:\mathrm{9}\:+\:\mathrm{4}\:\left(\:\underset{{k}=\mathrm{2}} {\overset{{n}} {\sum}}\:\:{a}_{\:{k}} ^{\:\mathrm{2}} \:\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{is}\:\:{given} \\ $$$$\:\:\:\:\:{let}\:\:\:\:{a}_{\:{k}} \:=\:{a}_{{k}−\mathrm{1}} \:.\:\left({a}_{\:{k}−\mathrm{1}} \:+\mathrm{1}\right) \\ $$$$\:\:\:\:\:{and}\:\:\:{a}_{\mathrm{1}} \:=\mathrm{1}\:,\:\:\:{a}_{\:\mathrm{2}} \:=\:\mathrm{2}\:\:,\:{a}_{\:\mathrm{3}} =\:\mathrm{6}\:, \\ $$$$\:\:\:\:\:\:{a}_{\mathrm{4}} \:=\:\:\mathrm{42}\:\:\:,\:{a}_{\:\mathrm{5}} \:=\:\mathrm{1806}\:\:\:\:{and}\:\:{etc} \\ $$$$\:\:\:{find}\:{the}\:\:{value}\:\:{of}\:\:\:\:{E}\:=? \\ $$

Question Number 199092    Answers: 5   Comments: 0

Let the polynomial p(x)=5x^3 +3x^2 −10 have roots a,b and c. What is the value of (a/(b+c))+(b/(c+a))+(c/(a+b))?

$${Let}\:{the}\:{polynomial}\:{p}\left({x}\right)=\mathrm{5}{x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{10} \\ $$$${have}\:{roots}\:{a},{b}\:{and}\:{c}.\:{What}\:{is}\:{the}\:{value} \\ $$$${of}\:\frac{{a}}{{b}+{c}}+\frac{{b}}{{c}+{a}}+\frac{{c}}{{a}+{b}}? \\ $$

Question Number 198772    Answers: 0   Comments: 1

x^4 +ax^3 +bx^2 +cx+d=0

$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$

Question Number 198754    Answers: 1   Comments: 0

Question Number 198647    Answers: 3   Comments: 1

Question Number 198575    Answers: 1   Comments: 3

Question Number 198559    Answers: 0   Comments: 0

Question Number 198558    Answers: 1   Comments: 1

Question Number 198644    Answers: 2   Comments: 2

Question Number 198519    Answers: 1   Comments: 0

Find a,b,c and d such that { ((abc = 1 (mod 11))),((abd = 2 (mod 11) )),((acd = 3 (mod 11) )),((bcd = 4 (mod 11) )) :}

$$\:\:\mathrm{Find}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\mathrm{and}\:\mathrm{d}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\:\:\begin{cases}{\mathrm{abc}\:=\:\mathrm{1}\:\left(\mathrm{mod}\:\mathrm{11}\right)}\\{\mathrm{abd}\:=\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{11}\right)\:}\\{\mathrm{acd}\:=\:\mathrm{3}\:\left(\mathrm{mod}\:\mathrm{11}\right)\:}\\{\mathrm{bcd}\:=\:\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{11}\right)\:}\end{cases} \\ $$

Question Number 198517    Answers: 0   Comments: 0

Question Number 198474    Answers: 2   Comments: 0

16000 = (x^3 /((1−x)^2 )) x=?

$$\mathrm{16000}\:=\:\frac{\mathrm{x}^{\mathrm{3}} }{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} }\: \\ $$$$\:\mathrm{x}=? \\ $$

Question Number 198460    Answers: 0   Comments: 0

In △ABC holds: Π (1 + (1/a) tan (A/2)) ≥ (1 + (1/(3R)))^3

$$\mathrm{In}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\Pi\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{a}}\:\mathrm{tan}\:\frac{\mathrm{A}}{\mathrm{2}}\right)\:\geqslant\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{3R}}\right)^{\mathrm{3}} \\ $$

Question Number 198449    Answers: 0   Comments: 2

Question Number 198447    Answers: 2   Comments: 5

Given function f(4567,321567)= 567+321=888. f(32156,12062)= 156+120=276 find the value of f(((20^(22) )/(21)) ).

$$\:\:\mathrm{Given}\:\mathrm{function}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{4567},\mathrm{321567}\right)=\:\mathrm{567}+\mathrm{321}=\mathrm{888}. \\ $$$$\:\:\mathrm{f}\left(\mathrm{32156},\mathrm{12062}\right)=\:\mathrm{156}+\mathrm{120}=\mathrm{276} \\ $$$$\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\:\:\:\:\:\mathrm{f}\left(\frac{\mathrm{20}^{\mathrm{22}} }{\mathrm{21}}\:\right). \\ $$

Question Number 198439    Answers: 0   Comments: 4

Question Number 198435    Answers: 1   Comments: 0

Question Number 198431    Answers: 2   Comments: 0

f : R → R f (3x − 1) = x + 5 Find: f(x) = ?

$$\mathrm{f}\::\:\mathbb{R}\:\rightarrow\:\mathbb{R} \\ $$$$\mathrm{f}\:\left(\mathrm{3x}\:−\:\mathrm{1}\right)\:=\:\mathrm{x}\:+\:\mathrm{5} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$

Question Number 198428    Answers: 0   Comments: 0

Question Number 198414    Answers: 0   Comments: 0

(3/8)(3h−p)^2 +3ph=(3h^2 −1) and (((3h−p)^3 )/(16))+p(3h^2 −1)=h^3 −h−c Find p and h in terms of 0<c<(2/(3(√3)))∙

$$\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{3}{h}−{p}\right)^{\mathrm{2}} +\mathrm{3}{ph}=\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right) \\ $$$${and} \\ $$$$\frac{\left(\mathrm{3}{h}−{p}\right)^{\mathrm{3}} }{\mathrm{16}}+{p}\left(\mathrm{3}{h}^{\mathrm{2}} −\mathrm{1}\right)={h}^{\mathrm{3}} −{h}−{c} \\ $$$${Find}\:\:{p}\:{and}\:{h}\:\:{in}\:{terms}\:{of}\:\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\centerdot \\ $$

  Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63      Pg 64      Pg 65      Pg 66   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com