Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 59

Question Number 194648    Answers: 3   Comments: 3

Question Number 194637    Answers: 4   Comments: 1

x+y=1 x^2 +y^2 =2 x^(11) +y^(11) =?

$$ \\ $$$${x}+{y}=\mathrm{1} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{2} \\ $$$${x}^{\mathrm{11}} +{y}^{\mathrm{11}} =? \\ $$$$ \\ $$$$ \\ $$

Question Number 194636    Answers: 0   Comments: 3

Question Number 194634    Answers: 1   Comments: 0

a_1 ,a_2 ,a_3 ,....,a_n >0 such that a_i ∈[0,i] ∀ i∈{1,2,3,4,...,n} prove that 2^n .a_1 (a_1 +a_2 )...(a_1 +a_2 +...+a_n )≥(n+1)(a_1 ^2 .a_2 ^2 ...a_n ^2 )

$${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} ,....,{a}_{{n}} >\mathrm{0}\:{such}\:{that}\:{a}_{{i}} \in\left[\mathrm{0},{i}\right]\: \\ $$$$\forall\:{i}\in\left\{\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},...,{n}\right\}\:{prove}\:{that} \\ $$$$\mathrm{2}^{{n}} .{a}_{\mathrm{1}} \left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} \right)...\left({a}_{\mathrm{1}} +{a}_{\mathrm{2}} +...+{a}_{{n}} \right)\geqslant\left({n}+\mathrm{1}\right)\left({a}_{\mathrm{1}} ^{\mathrm{2}} .{a}_{\mathrm{2}} ^{\mathrm{2}} ...{a}_{{n}} ^{\mathrm{2}} \right) \\ $$

Question Number 194619    Answers: 1   Comments: 0

Find the sum of the roots of the equation: −3x^3 + 8x^2 − 6x − 7 = 0

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}: \\ $$$$−\mathrm{3x}^{\mathrm{3}} \:+\:\mathrm{8x}^{\mathrm{2}} \:−\:\mathrm{6x}\:−\:\mathrm{7}\:=\:\mathrm{0} \\ $$

Question Number 194612    Answers: 1   Comments: 2

Question Number 194610    Answers: 1   Comments: 0

where can I learn about multiple sigma notaions of dependent and independent variables something like this Σ_(1≤i) Σ_(<j) Σ_(<k≤1) (i+j+k)=λ find λ I want to know what to study

$${where}\:{can}\:{I}\:{learn}\:{about}\:{multiple}\:{sigma}\:{notaions} \\ $$$${of}\:{dependent}\:{and}\:{independent}\:{variables} \\ $$$$ \\ $$$${something}\:{like}\:{this} \\ $$$$\underset{\mathrm{1}\leqslant{i}} {\sum}\underset{<{j}} {\sum}\underset{<{k}\leqslant\mathrm{1}} {\sum}\left({i}+{j}+{k}\right)=\lambda \\ $$$${find}\:\lambda \\ $$$${I}\:{want}\:{to}\:{know}\:{what}\:{to}\:{study} \\ $$

Question Number 194586    Answers: 1   Comments: 2

abc = e^3 + d^3 + f^3 edf = a^3 + b^3 + c^3 find: abc and edf

$$\mathrm{abc}\:=\:\mathrm{e}^{\mathrm{3}} \:+\:\mathrm{d}^{\mathrm{3}} \:+\:\mathrm{f}^{\mathrm{3}} \\ $$$$\mathrm{edf}\:=\:\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{c}^{\mathrm{3}} \\ $$$$\mathrm{find}:\:\mathrm{abc}\:\:\mathrm{and}\:\:\mathrm{edf}\: \\ $$

Question Number 194579    Answers: 2   Comments: 0

if u_n =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ] then u_(n+1) =u_n +u_(n−1) ? ; n=0,1,2,..

$${if}\:\:\:\:{u}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \right] \\ $$$$\:{then}\:\:\:{u}_{{n}+\mathrm{1}} ={u}_{{n}} +{u}_{{n}−\mathrm{1}} \:\:\:?\:\:\:\:\:;\:\:\:{n}=\mathrm{0},\mathrm{1},\mathrm{2},.. \\ $$

Question Number 194573    Answers: 0   Comments: 0

Question Number 194559    Answers: 2   Comments: 0

repeat question Shiw that : Σ_(i=1) ^n ((1/(2i−1))−(1/(2i)))=Σ_(i=1) ^n (1/(n+i)) ?

$${repeat}\:{question} \\ $$$${Shiw}\:{that}\:: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\left(\frac{\mathrm{1}}{\mathrm{2}{i}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}{i}}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{n}+{i}}\:\:? \\ $$

Question Number 194526    Answers: 2   Comments: 0

((f(x+1))/(f(x)))=x^(2 ) f(x)=? ((f(6))/(f(3)))=?

$$\frac{{f}\left({x}+\mathrm{1}\right)}{{f}\left({x}\right)}={x}^{\mathrm{2}\:\:\:\:\:\:\:\:} \:\:\:\:{f}\left({x}\right)=? \\ $$$$\frac{{f}\left(\mathrm{6}\right)}{{f}\left(\mathrm{3}\right)}=? \\ $$

Question Number 194522    Answers: 7   Comments: 0

Question Number 194509    Answers: 2   Comments: 0

Question Number 194491    Answers: 1   Comments: 0

x=(√(4+(√(5(√3) +5(√(48−10(√(7+4(√3))))))))) determinant (((2x−1=?)))

$$\:\:\mathrm{x}=\sqrt{\mathrm{4}+\sqrt{\mathrm{5}\sqrt{\mathrm{3}}\:+\mathrm{5}\sqrt{\mathrm{48}−\mathrm{10}\sqrt{\mathrm{7}+\mathrm{4}\sqrt{\mathrm{3}}}}}}\: \\ $$$$\:\:\:\begin{array}{|c|}{\mathrm{2x}−\mathrm{1}=?}\\\hline\end{array} \\ $$

Question Number 194455    Answers: 1   Comments: 0

Question Number 194444    Answers: 1   Comments: 0

Question Number 194422    Answers: 1   Comments: 0

What books use for studying inequalities for beginners

$${What}\:{books}\:{use}\:{for}\:{studying}\:{inequalities} \\ $$$${for}\:{beginners}\: \\ $$

Question Number 194389    Answers: 1   Comments: 0

(√(√(49+20(√6))))=?

$$\sqrt{\sqrt{\mathrm{49}+\mathrm{20}\sqrt{\mathrm{6}}}}=? \\ $$

Question Number 194383    Answers: 0   Comments: 0

Question Number 194373    Answers: 0   Comments: 0

Show Σ_(i=1) ^n ((1/(2i−1))− (1/(2i)))=Σ_(i=1) ^n (1/(n+i))

$${Show}\:\:\: \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{2}{i}−\mathrm{1}}−\:\frac{\mathrm{1}}{\mathrm{2}{i}}\right)=\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{{n}+{i}}\: \\ $$$$ \\ $$

Question Number 194326    Answers: 1   Comments: 0

(√(((√(x^2 +66^2 +x))/x) )) −(√(x(√(x^2 +66^2 ))−x^2 )) = 5

$$\:\:\sqrt{\frac{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} +\mathrm{x}}}{\mathrm{x}}\:}\:−\sqrt{\mathrm{x}\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{66}^{\mathrm{2}} }−\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{5}\: \\ $$

Question Number 194322    Answers: 0   Comments: 0

Question Number 194321    Answers: 1   Comments: 0

find min −(((x−y)(((xy)/4)−4)^2 )/(xy)) s. t. x>0>y

$$\mathrm{find}\:\mathrm{min}\:\:−\frac{\left({x}−{y}\right)\left(\frac{{xy}}{\mathrm{4}}−\mathrm{4}\right)^{\mathrm{2}} }{{xy}} \\ $$$$\mathrm{s}.\:\mathrm{t}.\:\:{x}>\mathrm{0}>{y} \\ $$

Question Number 194316    Answers: 0   Comments: 1

if x∈R & x^x^6 =((√2))^(√2) ⇒ x=?

$${if}\:\:{x}\in{R}\:\:\&\:\:{x}^{{x}^{\mathrm{6}} } =\left(\sqrt{\mathrm{2}}\right)^{\sqrt{\mathrm{2}}} \:\Rightarrow\:\:{x}=? \\ $$

Question Number 194295    Answers: 1   Comments: 0

  Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62      Pg 63   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com