Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 58

Question Number 199898    Answers: 1   Comments: 0

Question Number 199862    Answers: 0   Comments: 0

consider the taylor expansion of the function (1/(1+x^3 )) centered at x = 1/2 then the radius of convergence of the power series repersentation of the function is

$$\mathrm{consider}\:\mathrm{the}\:\mathrm{taylor}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} } \\ $$$$\mathrm{centered}\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{1}/\mathrm{2}\:\mathrm{then}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{convergence} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{power}\:\mathrm{series}\:\mathrm{repersentation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is} \\ $$

Question Number 199893    Answers: 0   Comments: 2

Question Number 199890    Answers: 0   Comments: 0

Question Number 199889    Answers: 0   Comments: 0

Question Number 199888    Answers: 0   Comments: 0

Question Number 199840    Answers: 1   Comments: 0

Question Number 199837    Answers: 1   Comments: 0

Question Number 199836    Answers: 0   Comments: 3

Question Number 199775    Answers: 2   Comments: 0

Question Number 199774    Answers: 1   Comments: 0

Question Number 199772    Answers: 0   Comments: 0

Question Number 199770    Answers: 4   Comments: 0

Question Number 199752    Answers: 0   Comments: 0

Question Number 199733    Answers: 1   Comments: 0

Question Number 199732    Answers: 2   Comments: 0

Question Number 199731    Answers: 2   Comments: 0

Question Number 199721    Answers: 0   Comments: 0

Question Number 199711    Answers: 3   Comments: 0

Question Number 199709    Answers: 1   Comments: 0

u_1 = 2 u_(n+1) = 3u_n + 2 u_n → n ¿

$${u}_{\mathrm{1}} \:=\:\mathrm{2}\: \\ $$$${u}_{{n}+\mathrm{1}} \:=\:\mathrm{3}{u}_{{n}} \:+\:\mathrm{2} \\ $$$${u}_{{n}} \:\rightarrow\:{n}\:¿ \\ $$

Question Number 199694    Answers: 1   Comments: 0

Question Number 199671    Answers: 1   Comments: 0

Question Number 199654    Answers: 1   Comments: 0

x^4 + 4x^3 − 8x + 1 − m = 0 has 4 real roots find m=?

$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{8x}\:+\:\mathrm{1}\:−\:\mathrm{m}\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{4}\:\mathrm{real}\:\mathrm{roots} \\ $$$$\mathrm{find}\:\:\mathrm{m}=? \\ $$

Question Number 199632    Answers: 2   Comments: 0

In a swimming pool there are four pipes that fill it with water. When pipes 1, 2, 3 work, the pool fills in 12 minutes. When pipes 2, 3, 4 work, the pool fills in 15 minutes. When pipes 1 and 4 work, the pool fills in 20 minutes. Find how many minutes the pool fills if all four pipes work simultaneously.

In a swimming pool there are four pipes that fill it with water. When pipes 1, 2, 3 work, the pool fills in 12 minutes. When pipes 2, 3, 4 work, the pool fills in 15 minutes. When pipes 1 and 4 work, the pool fills in 20 minutes. Find how many minutes the pool fills if all four pipes work simultaneously.

Question Number 199606    Answers: 1   Comments: 0

Question Number 199602    Answers: 3   Comments: 0

2 + 7 + 12 + ... + x = 270 Find: x = ?

$$\mathrm{2}\:+\:\mathrm{7}\:+\:\mathrm{12}\:+\:...\:+\:\boldsymbol{\mathrm{x}}\:=\:\mathrm{270} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$

  Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com