Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 58

Question Number 191833    Answers: 3   Comments: 0

Question Number 191830    Answers: 0   Comments: 0

Question Number 191798    Answers: 2   Comments: 2

Question Number 191790    Answers: 1   Comments: 7

prove that ((2x−4)/(2∙3∙4))+((3x−5)/(3∙4∙5))+((4x−6)/(4∙5∙6))+.....+((100x−102)/(100∙101∙102))=((103)/(102))

$${prove}\:{that} \\ $$$$\frac{\mathrm{2}{x}−\mathrm{4}}{\mathrm{2}\centerdot\mathrm{3}\centerdot\mathrm{4}}+\frac{\mathrm{3}{x}−\mathrm{5}}{\mathrm{3}\centerdot\mathrm{4}\centerdot\mathrm{5}}+\frac{\mathrm{4}{x}−\mathrm{6}}{\mathrm{4}\centerdot\mathrm{5}\centerdot\mathrm{6}}+.....+\frac{\mathrm{100}{x}−\mathrm{102}}{\mathrm{100}\centerdot\mathrm{101}\centerdot\mathrm{102}}=\frac{\mathrm{103}}{\mathrm{102}} \\ $$$$ \\ $$

Question Number 191775    Answers: 2   Comments: 0

Question Number 191735    Answers: 3   Comments: 0

Verify that ┐(p→q)→(p∧^┐ q) is tautology using laws of algebra

$${Verify}\:{that} \\ $$$$\:\urcorner\left({p}\rightarrow{q}\right)\rightarrow\left({p}\wedge^{\urcorner} {q}\right)\:{is}\:{tautology}\:{using}\:{laws}\:{of} \\ $$$${algebra} \\ $$

Question Number 191753    Answers: 1   Comments: 0

Question Number 191717    Answers: 0   Comments: 0

Question Number 191716    Answers: 0   Comments: 0

Question Number 191706    Answers: 2   Comments: 0

Question Number 191675    Answers: 2   Comments: 2

Solve for x : (x − (1/x))^(1/2) + (1 − (1/x))^(1/2) = x

$$\mathrm{Solve}\:\mathrm{for}\:{x}\:: \\ $$$$\left({x}\:−\:\frac{\mathrm{1}}{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:+\:\left(\mathrm{1}\:−\:\frac{\mathrm{1}}{{x}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\:{x} \\ $$

Question Number 191663    Answers: 4   Comments: 0

2^a +4^b +8^c =328 find a,b and c when(a,b,c)is natual number

$$\mathrm{2}^{{a}} +\mathrm{4}^{{b}} +\mathrm{8}^{{c}} =\mathrm{328} \\ $$$${find}\:{a},{b}\:{and}\:{c} \\ $$$${when}\left({a},{b},{c}\right){is}\:{natual}\:{number} \\ $$

Question Number 191632    Answers: 0   Comments: 1

∫_0 ^∞ (√(tan θ)) dθ

$$\int_{\mathrm{0}} ^{\infty} \sqrt{\mathrm{tan}\:\theta}\:{d}\theta \\ $$

Question Number 191631    Answers: 1   Comments: 0

∫_0 ^∞ x^(1/2) e^(−x^2 ) dx

$$\int_{\mathrm{0}} ^{\infty} {x}^{\frac{\mathrm{1}}{\mathrm{2}}} {e}^{−{x}^{\mathrm{2}} } {dx} \\ $$

Question Number 191624    Answers: 1   Comments: 0

Question Number 191623    Answers: 2   Comments: 0

Question Number 191615    Answers: 1   Comments: 0

a + b + c = 0. Prove that, (a/(a^2 − bc)) + (b/(b^2 − ca)) + (c/(c^2 − ab)) = 0.

$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{0}.\:\mathrm{Prove}\:\mathrm{that}, \\ $$$$\frac{{a}}{{a}^{\mathrm{2}} \:−\:{bc}}\:+\:\frac{{b}}{{b}^{\mathrm{2}} \:−\:{ca}}\:+\:\frac{{c}}{{c}^{\mathrm{2}} \:−\:{ab}}\:=\:\mathrm{0}. \\ $$

Question Number 191614    Answers: 0   Comments: 1

((α^(100) +β^(100) )/(α^(100) −β^(100) )) = (((−w)^(100) +(−w^2 )^(100) )/((−w)^(100) −(−w^2 )^(100) )) = ((w^(100) +w^(200) )/(w^(100) −w^(200) )) = ((1+w^(100) )/(1−w^(100 ) )) = ((1+w)/(1−w)) = (2/(2w)) = (1/w) =

$$\frac{\alpha^{\mathrm{100}} +\beta^{\mathrm{100}} }{\alpha^{\mathrm{100}} −\beta^{\mathrm{100}} }\:=\: \\ $$$$\frac{\left(−{w}\right)^{\mathrm{100}} +\left(−{w}^{\mathrm{2}} \right)^{\mathrm{100}} }{\left(−{w}\right)^{\mathrm{100}} −\left(−{w}^{\mathrm{2}} \right)^{\mathrm{100}} } \\ $$$$=\:\frac{{w}^{\mathrm{100}} +{w}^{\mathrm{200}} }{{w}^{\mathrm{100}} −{w}^{\mathrm{200}} } \\ $$$$=\:\frac{\mathrm{1}+{w}^{\mathrm{100}} }{\mathrm{1}−{w}^{\mathrm{100}\:} } \\ $$$$=\:\frac{\mathrm{1}+{w}}{\mathrm{1}−{w}}\:=\:\frac{\mathrm{2}}{\mathrm{2}{w}}\:=\:\frac{\mathrm{1}}{{w}}\:=\: \\ $$

Question Number 191610    Answers: 1   Comments: 0

Q: if x+(1/x)=2cos(θ) prove it x^n +(1/x^n )=2cos(nθ)

$${Q}:\:{if}\:\:{x}+\frac{\mathrm{1}}{{x}}=\mathrm{2}{cos}\left(\theta\right)\:\:{prove}\:{it}\:\:{x}^{{n}} +\frac{\mathrm{1}}{{x}^{{n}} }=\mathrm{2}{cos}\left({n}\theta\right) \\ $$

Question Number 191589    Answers: 1   Comments: 1

a^x = bc, b^y = ca, c^z = ab. Prove that, (x/(1 + x)) + (y/(1 + y)) + (z/(1 + z)) = 2. (Without using log) a ≠ b ≠ c

$${a}^{{x}} \:=\:{bc},\:{b}^{{y}} \:=\:{ca},\:{c}^{{z}} \:=\:{ab}. \\ $$$$\mathrm{Prove}\:\mathrm{that},\:\frac{{x}}{\mathrm{1}\:+\:{x}}\:+\:\frac{{y}}{\mathrm{1}\:+\:{y}}\:+\:\frac{{z}}{\mathrm{1}\:+\:{z}}\:=\:\mathrm{2}. \\ $$$$\left(\mathrm{Without}\:\mathrm{using}\:\mathrm{log}\right) \\ $$$${a}\:\neq\:{b}\:\neq\:{c} \\ $$

Question Number 191569    Answers: 0   Comments: 0

Question Number 191555    Answers: 0   Comments: 1

Solve (√x) + y = 11 x + (√y) = 7

$$\mathrm{Solve} \\ $$$$\sqrt{{x}}\:+\:{y}\:=\:\mathrm{11} \\ $$$${x}\:+\:\sqrt{{y}}\:=\:\mathrm{7} \\ $$

Question Number 191553    Answers: 4   Comments: 1

If a^2 + a + 1 = 0 then find a^5 + a^4 + 1.

$$\mathrm{If}\:{a}^{\mathrm{2}} \:+\:{a}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:{a}^{\mathrm{5}} \:+\:{a}^{\mathrm{4}} \:+\:\mathrm{1}. \\ $$

Question Number 191552    Answers: 2   Comments: 0

If x^2 − 3x + 1 = 0 then find the value of (x^2 + x + (1/x) + (1/x^2 ))^2

$$\mathrm{If}\:{x}^{\mathrm{2}} \:−\:\mathrm{3}{x}\:+\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\left({x}^{\mathrm{2}} \:+\:{x}\:+\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$

Question Number 191546    Answers: 1   Comments: 0

If m + 1 = (√n) + 3 then find the value of (1/2)(((m^3 − 6m^2 + 12m −8)/( (√n))) − n)

$$\mathrm{If}\:{m}\:+\:\mathrm{1}\:=\:\sqrt{{n}}\:+\:\mathrm{3}\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{m}^{\mathrm{3}} \:−\:\mathrm{6}{m}^{\mathrm{2}} \:+\:\mathrm{12}{m}\:−\mathrm{8}}{\:\sqrt{{n}}}\:−\:{n}\right) \\ $$

Question Number 191536    Answers: 2   Comments: 0

Factorize (2/(2x − 1)) −5 + (3/(3x − 1))

$$\mathrm{Factorize} \\ $$$$\frac{\mathrm{2}}{\mathrm{2}{x}\:−\:\mathrm{1}}\:−\mathrm{5}\:+\:\frac{\mathrm{3}}{\mathrm{3}{x}\:−\:\mathrm{1}} \\ $$

  Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61      Pg 62   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com