Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 57

Question Number 192370    Answers: 2   Comments: 0

Solve the equation x^4 − 2x^3 + 4x^2 + 6x − 21 = 0, Given that the sum of two of its roots is zero

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{equation}\:\:\:\mathrm{x}^{\mathrm{4}} \:\:−\:\:\mathrm{2x}^{\mathrm{3}} \:\:+\:\:\mathrm{4x}^{\mathrm{2}} \:\:+\:\:\mathrm{6x}\:\:\:−\:\:\mathrm{21}\:\:\:=\:\:\:\mathrm{0},\:\: \\ $$$$\mathrm{Given}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{two}\:\mathrm{of}\:\mathrm{its}\:\mathrm{roots}\:\mathrm{is}\:\mathrm{zero} \\ $$

Question Number 192363    Answers: 0   Comments: 0

Solve for x x_i −x+(2cx−cb)(y_i +cx^2 −cbx)=0 the following is true for this equaition i)c>0 ii)b>0 iii)there is only one real solution

$$\mathrm{Solve}\:\mathrm{for}\:{x} \\ $$$${x}_{{i}} −{x}+\left(\mathrm{2}{cx}−{cb}\right)\left({y}_{{i}} +{cx}^{\mathrm{2}} −{cbx}\right)=\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{is}\:\mathrm{true}\:\mathrm{for}\:\mathrm{this}\:\mathrm{equaition} \\ $$$$\left.{i}\right)\mathrm{c}>\mathrm{0} \\ $$$$\left.{ii}\right)\mathrm{b}>\mathrm{0} \\ $$$$\left.{iii}\right)\mathrm{there}\:\mathrm{is}\:\mathrm{only}\:\mathrm{one}\:\mathrm{real}\:\mathrm{solution} \\ $$

Question Number 192330    Answers: 0   Comments: 0

Question Number 192350    Answers: 2   Comments: 0

Question Number 192186    Answers: 3   Comments: 0

If α, β and γ are the roots of x^3 + px + q = 0, find Σα^4 .

$$\mathrm{If}\:\:\alpha,\:\beta\:\:\mathrm{and}\:\gamma\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\:\:\mathrm{x}^{\mathrm{3}} \:\:+\:\:\mathrm{px}\:\:+\:\:\mathrm{q}\:\:=\:\:\mathrm{0},\:\:\:\:\mathrm{find}\:\:\:\Sigma\alpha^{\mathrm{4}} . \\ $$

Question Number 192171    Answers: 1   Comments: 2

2^x^x^x =2^(√2) x=?

$$\mathrm{2}^{{x}^{{x}^{{x}} } } =\mathrm{2}^{\sqrt{\mathrm{2}}} \\ $$$${x}=? \\ $$

Question Number 192173    Answers: 1   Comments: 0

prove that (x^2 +a^2 )^4 = (x^4 −6x^2 a^2 +a^4 )^2 +(4x^3 a−4xa^3 )^2

$${prove}\:{that} \\ $$$$\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{4}} \:=\:\left({x}^{\mathrm{4}} −\mathrm{6}{x}^{\mathrm{2}} {a}^{\mathrm{2}} +{a}^{\mathrm{4}} \right)^{\mathrm{2}} +\left(\mathrm{4}{x}^{\mathrm{3}} {a}−\mathrm{4}{xa}^{\mathrm{3}} \right)^{\mathrm{2}} \\ $$

Question Number 192149    Answers: 5   Comments: 0

Find: (1/2) + (3/2^3 ) + (5/2^5 ) + (7/2^7 ) + ...

$$\mathrm{Find}: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\mathrm{3}}{\mathrm{2}^{\mathrm{3}} }\:+\:\frac{\mathrm{5}}{\mathrm{2}^{\mathrm{5}} }\:+\:\frac{\mathrm{7}}{\mathrm{2}^{\mathrm{7}} }\:+\:... \\ $$

Question Number 192143    Answers: 1   Comments: 2

Find: (7/2) + ((77)/(22)) + ((777)/(222)) + ((7777)/(2222)) +...+ ((77777777)/(22222222))

$$\mathrm{Find}: \\ $$$$\frac{\mathrm{7}}{\mathrm{2}}\:+\:\frac{\mathrm{77}}{\mathrm{22}}\:+\:\frac{\mathrm{777}}{\mathrm{222}}\:+\:\frac{\mathrm{7777}}{\mathrm{2222}}\:+...+\:\frac{\mathrm{77777777}}{\mathrm{22222222}} \\ $$

Question Number 192142    Answers: 1   Comments: 0

Question let x=<a_n a_(n−1) ...a_1 a_0 > ∈N ; a_0 ≠0 & y=<a_n a_(n−1) ...a_1 > ∈N be two natural numbers such that (x/y)∈N find the number “ x ” ?

$${Question} \\ $$$${let}\:\:\:{x}=<{a}_{{n}} {a}_{{n}−\mathrm{1}} ...{a}_{\mathrm{1}} {a}_{\mathrm{0}} >\:\in\mathbb{N}\:;\:{a}_{\mathrm{0}} \neq\mathrm{0}\:\:\&\: \\ $$$$\:{y}=<{a}_{{n}} {a}_{{n}−\mathrm{1}} ...{a}_{\mathrm{1}} >\:\in\mathbb{N}\:\:{be}\: \\ $$$${two}\:{natural}\:{numbers}\: \\ $$$${such}\:{that}\:\:\frac{{x}}{{y}}\in\mathbb{N}\: \\ $$$${find}\:{the}\:{number}\:``\:{x}\:''\:? \\ $$$$ \\ $$

Question Number 192134    Answers: 1   Comments: 0

when ((√2)+1)^7 =(√(57125))+(√(57124)) then ((√2)−1)^7 =?

$$\mathrm{when}\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{7}} =\sqrt{\mathrm{57125}}+\sqrt{\mathrm{57124}} \\ $$$$\mathrm{then}\:\:\:\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{7}} =? \\ $$

Question Number 192172    Answers: 1   Comments: 0

Q1 ∴ x=<1a_1 a_2 ...a_n >∈N & y=<a_1 a_2 ...a_n 1>∈N if y=3x then , find the smallest value of x Q2 ∴ with the above conditions ,what other values can be placed besides the number “ 1 ”

$${Q}\mathrm{1}\:\therefore\:\:{x}=<\mathrm{1}{a}_{\mathrm{1}} {a}_{\mathrm{2}} ...{a}_{{n}} >\in\mathbb{N}\:\:\&\:\:{y}=<{a}_{\mathrm{1}} {a}_{\mathrm{2}} ...{a}_{{n}} \mathrm{1}>\in\mathbb{N} \\ $$$${if}\:\:{y}=\mathrm{3}{x}\:\:{then}\:\:,\:{find}\:{the}\:{smallest}\: \\ $$$${value}\:{of}\:\:{x} \\ $$$${Q}\mathrm{2}\:\therefore\:{with}\:{the}\:{above}\:{conditions}\:,{what}\:{other}\:{values}\: \\ $$$${can}\:{be}\:{placed}\:\:{besides}\:{the}\:{number}\:``\:\mathrm{1}\:''\: \\ $$

Question Number 192087    Answers: 0   Comments: 3

Let {H_α } ∈ Ω, be a family of subgroup of a group G, then prove that ∩_(α ∈ Ω) H_α .

$$\mathrm{Let}\:\left\{\mathrm{H}_{\alpha} \right\}\:\in\:\Omega,\:\mathrm{be}\:\mathrm{a}\:\mathrm{family}\:\mathrm{of}\: \\ $$$$\mathrm{subgroup}\:\mathrm{of}\:\mathrm{a}\:\mathrm{group}\:\mathrm{G},\:\mathrm{then}\: \\ $$$$\mathrm{prove}\:\mathrm{that}\:\cap_{\alpha\:\in\:\Omega} \mathrm{H}_{\alpha} . \\ $$$$ \\ $$$$ \\ $$

Question Number 192062    Answers: 2   Comments: 3

prove it : times_n ; (√(4+(√(4+(√(4+...+(√4))))) )) < 3

$${prove}\:{it}\::\: \\ $$$$\:\:\:{times\_n}\:\:\:;\:\:\:\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+\sqrt{\mathrm{4}+...+\sqrt{\mathrm{4}}}}\:\:}\:<\:\mathrm{3} \\ $$

Question Number 192057    Answers: 1   Comments: 0

Simplify: (((√a) + (√a^2 ) + (√a^3 ) + (√a^4 ))/(((√a) + 1)∙(a + 1)))

$$\mathrm{Simplify}: \\ $$$$\frac{\sqrt{\mathrm{a}}\:\:+\:\:\sqrt{\mathrm{a}^{\mathrm{2}} }\:\:+\:\:\sqrt{\mathrm{a}^{\mathrm{3}} }\:\:+\:\:\sqrt{\mathrm{a}^{\mathrm{4}} }}{\left(\sqrt{\mathrm{a}}\:\:+\:\:\mathrm{1}\right)\centerdot\left(\mathrm{a}\:\:+\:\:\mathrm{1}\right)} \\ $$

Question Number 192039    Answers: 0   Comments: 0

let x,y,z be positive real number such that x^4 +y^4 +z^4 = 1 find the minimum value of (x^3 /(1−x^8 )) + (y^3 /(1−y^8 )) + (z^3 /(1−z^8 ))

$$\mathrm{let}\:{x},{y},{z}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:{x}^{\mathrm{4}} +{y}^{\mathrm{4}} +{z}^{\mathrm{4}} \:=\:\mathrm{1}\:\mathrm{find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value} \\ $$$$\mathrm{of} \\ $$$$\:\:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{1}−{x}^{\mathrm{8}} }\:+\:\frac{{y}^{\mathrm{3}} }{\mathrm{1}−{y}^{\mathrm{8}} }\:+\:\frac{{z}^{\mathrm{3}} }{\mathrm{1}−{z}^{\mathrm{8}} } \\ $$

Question Number 192009    Answers: 2   Comments: 0

if a>1 , show ((Σ_(k=1) ^(a^2 −1) (√(a+(√k))))/(Σ_(k=1) ^(a^2 −1) (√(a−(√k))))) = (√2) + 1

$$\:\:\:\:\:{if}\:\:{a}>\mathrm{1}\:,\:{show} \\ $$$$\:\:\:\:\:\frac{\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\:\:\sqrt{{a}+\sqrt{{k}}}}{\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\:\:\sqrt{{a}−\sqrt{{k}}}}\:\:\:=\:\:\:\sqrt{\mathrm{2}}\:\:+\:\:\mathrm{1} \\ $$

Question Number 191961    Answers: 0   Comments: 0

Question Number 191950    Answers: 1   Comments: 0

(√a) = 1 + (1/a) find: a^2 −a−(√a) = ?

$$\sqrt{\mathrm{a}}\:=\:\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{a}}\:\:\:\mathrm{find}:\:\:\:\mathrm{a}^{\mathrm{2}} −\mathrm{a}−\sqrt{\mathrm{a}}\:=\:? \\ $$

Question Number 191946    Answers: 1   Comments: 0

((fof^(−1) (5)+fof^(−1) (15))/(fof^(−1) (5)))=?

$$\frac{\mathrm{fof}^{−\mathrm{1}} \left(\mathrm{5}\right)+\mathrm{fof}^{−\mathrm{1}} \left(\mathrm{15}\right)}{\mathrm{fof}^{−\mathrm{1}} \left(\mathrm{5}\right)}=? \\ $$

Question Number 191947    Answers: 2   Comments: 0

prove that (√(a+b(√(a−b(√(a+b(√(a−b(√(...)))))))))) = (((√(4a−3b^2 ))+b)/2)

$${prove}\:{that} \\ $$$$\sqrt{{a}+{b}\sqrt{{a}−{b}\sqrt{{a}+{b}\sqrt{{a}−{b}\sqrt{...}}}}}\:\:=\:\:\frac{\sqrt{\mathrm{4}{a}−\mathrm{3}{b}^{\mathrm{2}} }+{b}}{\mathrm{2}} \\ $$

Question Number 191867    Answers: 1   Comments: 0

Prove that if u=f(x^3 +y^3 ),where f is arbitry function then x^2 (∂u/∂y) = y^2 (∂u/∂x)

$${Prove}\:{that}\:{if}\:\:\:{u}={f}\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} \right),{where}\:{f}\:\:{is}\:{arbitry} \\ $$$${function}\:{then}\:\:\:\:{x}^{\mathrm{2}} \:\frac{\partial{u}}{\partial{y}}\:=\:{y}^{\mathrm{2}} \frac{\partial{u}}{\partial{x}} \\ $$

Question Number 191839    Answers: 1   Comments: 0

2^a = 3^b = 36^c then prove that ab = 2c(a + b).

$$\mathrm{2}^{{a}} \:=\:\mathrm{3}^{{b}} \:=\:\mathrm{36}^{{c}} \:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$${ab}\:=\:\mathrm{2}{c}\left({a}\:+\:{b}\right). \\ $$

Question Number 191833    Answers: 3   Comments: 0

Question Number 191830    Answers: 0   Comments: 0

Question Number 191798    Answers: 2   Comments: 2

  Pg 52      Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com