Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 57

Question Number 199923    Answers: 2   Comments: 0

Question Number 199900    Answers: 2   Comments: 0

Question Number 199898    Answers: 1   Comments: 0

Question Number 199862    Answers: 0   Comments: 0

consider the taylor expansion of the function (1/(1+x^3 )) centered at x = 1/2 then the radius of convergence of the power series repersentation of the function is

$$\mathrm{consider}\:\mathrm{the}\:\mathrm{taylor}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} } \\ $$$$\mathrm{centered}\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{1}/\mathrm{2}\:\mathrm{then}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{convergence} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{power}\:\mathrm{series}\:\mathrm{repersentation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is} \\ $$

Question Number 199893    Answers: 0   Comments: 2

Question Number 199890    Answers: 0   Comments: 0

Question Number 199889    Answers: 0   Comments: 0

Question Number 199888    Answers: 0   Comments: 0

Question Number 199840    Answers: 1   Comments: 0

Question Number 199837    Answers: 1   Comments: 0

Question Number 199836    Answers: 0   Comments: 3

Question Number 199775    Answers: 2   Comments: 0

Question Number 199774    Answers: 1   Comments: 0

Question Number 199772    Answers: 0   Comments: 0

Question Number 199770    Answers: 4   Comments: 0

Question Number 199752    Answers: 0   Comments: 0

Question Number 199733    Answers: 1   Comments: 0

Question Number 199732    Answers: 2   Comments: 0

Question Number 199731    Answers: 2   Comments: 0

Question Number 199721    Answers: 0   Comments: 0

Question Number 199711    Answers: 3   Comments: 0

Question Number 199709    Answers: 1   Comments: 0

u_1 = 2 u_(n+1) = 3u_n + 2 u_n → n ¿

$${u}_{\mathrm{1}} \:=\:\mathrm{2}\: \\ $$$${u}_{{n}+\mathrm{1}} \:=\:\mathrm{3}{u}_{{n}} \:+\:\mathrm{2} \\ $$$${u}_{{n}} \:\rightarrow\:{n}\:¿ \\ $$

Question Number 199694    Answers: 1   Comments: 0

Question Number 199671    Answers: 1   Comments: 0

Question Number 199654    Answers: 1   Comments: 0

x^4 + 4x^3 − 8x + 1 − m = 0 has 4 real roots find m=?

$$\mathrm{x}^{\mathrm{4}} \:+\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{8x}\:+\:\mathrm{1}\:−\:\mathrm{m}\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{4}\:\mathrm{real}\:\mathrm{roots} \\ $$$$\mathrm{find}\:\:\mathrm{m}=? \\ $$

Question Number 199632    Answers: 2   Comments: 0

In a swimming pool there are four pipes that fill it with water. When pipes 1, 2, 3 work, the pool fills in 12 minutes. When pipes 2, 3, 4 work, the pool fills in 15 minutes. When pipes 1 and 4 work, the pool fills in 20 minutes. Find how many minutes the pool fills if all four pipes work simultaneously.

In a swimming pool there are four pipes that fill it with water. When pipes 1, 2, 3 work, the pool fills in 12 minutes. When pipes 2, 3, 4 work, the pool fills in 15 minutes. When pipes 1 and 4 work, the pool fills in 20 minutes. Find how many minutes the pool fills if all four pipes work simultaneously.

  Pg 52      Pg 53      Pg 54      Pg 55      Pg 56      Pg 57      Pg 58      Pg 59      Pg 60      Pg 61   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com