Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 57
Question Number 199528 Answers: 0 Comments: 0
Question Number 199509 Answers: 2 Comments: 2
Question Number 199486 Answers: 2 Comments: 0
$$\mathrm{Solve}:\:\:\:\mathrm{100}^{\boldsymbol{\mathrm{x}}} \:=\:\mathrm{200} \\ $$
Question Number 199482 Answers: 0 Comments: 3
$$\mathrm{can}\:\mathrm{someone}\:\mathrm{factor}\:\mathrm{this}\:\left(\mathrm{3x}^{\mathrm{3}} \mathrm{y}−\mathrm{7x}^{\mathrm{2}} +\mathrm{5xy}^{\mathrm{3}} −\mathrm{y}^{\mathrm{2}} \right) \\ $$
Question Number 199466 Answers: 1 Comments: 0
Question Number 199458 Answers: 1 Comments: 0
$$\boldsymbol{{Solve}}:\:\boldsymbol{{log}}_{\mathrm{3}} \boldsymbol{{p}}\:+\:\boldsymbol{{log}}_{\boldsymbol{{r}}} \mathrm{8}\:=\mathrm{5} \\ $$$$\boldsymbol{{r}}+\boldsymbol{{p}}=\mathrm{11}.\:\:\boldsymbol{{find}}\:\boldsymbol{{r\&p}} \\ $$
Question Number 199451 Answers: 3 Comments: 0
$$\mathrm{Find}: \\ $$$$\mathrm{1}.\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\sqrt[{\mathrm{5}\boldsymbol{\mathrm{n}}}]{\frac{\mathrm{5n}\:−\:\mathrm{25}}{\mathrm{3n}\:+\:\mathrm{15}}} \\ $$$$\mathrm{2}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} \:−\:\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{1}}\:\right) \\ $$$$\mathrm{3}.\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{cos}\:\mathrm{4x}^{\mathrm{3}} \:−\:\mathrm{1}}{\mathrm{sin}^{\mathrm{6}} \:\mathrm{2x}} \\ $$
Question Number 199447 Answers: 1 Comments: 0
$${b}_{{n}} ={sin}\left({a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}\right)\Rightarrow\:{S}_{{n}} =? \\ $$
Question Number 199432 Answers: 2 Comments: 0
$${without}\:{using}\:{calculator}: \\ $$$${what}\:{is}\:{larger}?\:\mathrm{log}_{\mathrm{2}} \:\mathrm{3}\:{or}\:\mathrm{log}_{\mathrm{3}} \:\mathrm{5}? \\ $$
Question Number 199389 Answers: 2 Comments: 0
$$\mathrm{log}_{\mathrm{12}} \mathrm{60}=? \\ $$$$\mathrm{log}_{\mathrm{6}} \mathrm{30}={a} \\ $$$$\mathrm{log}_{\mathrm{15}} \mathrm{24}={b} \\ $$
Question Number 199385 Answers: 2 Comments: 0
$$\mathrm{Find}: \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\mathrm{x}^{\mathrm{15}} \:\sqrt{\mathrm{1}\:+\:\mathrm{3x}^{\mathrm{8}} }\:\mathrm{dx}\:=\:? \\ $$
Question Number 199381 Answers: 1 Comments: 0
Question Number 199309 Answers: 1 Comments: 0
$$\:\:\:\:{a}_{{n}+\mathrm{1}\:} =\:{a}_{{n}} \:+\:\sqrt{{a}_{{n}} ^{\mathrm{2}} \:+\:\mathrm{1}}\:\:,\:{a}_{\mathrm{0}} \:=\:\mathrm{0} \\ $$$$\:\:\:\:\mathrm{find}\:\mathrm{a}_{\mathrm{n}\:} \:=\:\:?? \\ $$
Question Number 199308 Answers: 0 Comments: 0
Question Number 199290 Answers: 4 Comments: 1
$${If}\:{x}=\sqrt{{p}+{iq}}+\sqrt{{h}+{ik}} \\ $$$${and}\:\:\frac{{p}}{{q}}\neq\frac{{k}}{{h}}\:\:{then}\:{relate}\:{p},{q},{h},{k}\:\in\mathbb{R} \\ $$$${such}\:{that}\:{x}\in\mathbb{R}. \\ $$
Question Number 199259 Answers: 0 Comments: 1
Question Number 199620 Answers: 1 Comments: 0
Question Number 199230 Answers: 1 Comments: 0
$$\mathrm{x}\:,\:\mathrm{y}\::\:\:\:\mathrm{positive}\:\mathrm{real}\:\mathrm{numbers} \\ $$$$\mathrm{If}\::\:\:\:\mathrm{15}^{\boldsymbol{\mathrm{x}}} \:=\:\mathrm{9}^{\boldsymbol{\mathrm{y}}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{5}^{\frac{\mathrm{3}\boldsymbol{\mathrm{x}}}{\mathrm{2}\boldsymbol{\mathrm{y}}\:−\:\boldsymbol{\mathrm{x}}}} \:\:=\:\:? \\ $$
Question Number 199226 Answers: 1 Comments: 0
$${find} \\ $$$$\frac{\mathrm{2}\:\mathrm{sin}\:\mathrm{2}°+\mathrm{4}\:\mathrm{sin}\:\mathrm{4}°+...+\mathrm{180}\:\mathrm{sin}\:\mathrm{180}°}{\mathrm{90}}=? \\ $$$$ \\ $$$$\left[{an}\:{unsolved}\:{old}\:{question}\:#\mathrm{198900}\right] \\ $$
Question Number 199205 Answers: 0 Comments: 0
$$\:\:\:\:{a}_{{n}+\mathrm{1}\:} =\:{a}_{{n}} \:+\:\sqrt{{a}_{{n}} ^{\mathrm{2}} \:+\:\mathrm{1}}\:\:,\:{a}_{\mathrm{0}} \:=\:\alpha \\ $$$$\:\:\:\mathrm{find}\:\mathrm{a}_{\mathrm{n}\:} \:=\:\:?? \\ $$
Question Number 199194 Answers: 1 Comments: 0
$$\mathrm{a}_{\mathrm{1}} ,\mathrm{a}_{\mathrm{2}} ,... \\ $$$$\mathrm{a}_{\mathrm{1}} =\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{2n}} =\mathrm{n}\centerdot\mathrm{a}_{\mathrm{n}} \\ $$$$\mathrm{a}_{\mathrm{2}^{\mathrm{100}} } \:=\:? \\ $$
Question Number 199184 Answers: 0 Comments: 3
Question Number 199183 Answers: 1 Comments: 0
$$\mathrm{B},\mathrm{O},\mathrm{M}\:-\:\mathrm{Each}\:\mathrm{is}\:\mathrm{a}\:\mathrm{distinct}\:\mathrm{positive} \\ $$$$\mathrm{integer} \\ $$$$\mathrm{If}\:\:\:\mathrm{B}\:\centerdot\:\mathrm{O}\:\centerdot\:\mathrm{M}\:=\:\mathrm{223} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{max}\left(\mathrm{B}\:+\:\mathrm{O}\:+\:\mathrm{M}\right)=? \\ $$
Question Number 199170 Answers: 2 Comments: 9
$${n}^{\mathrm{4}} +\mathrm{2}{n}^{\mathrm{3}} +\mathrm{2}{n}^{\mathrm{2}} +{n}+\mathrm{7}\:=\:{a}^{\mathrm{2}} \:\left({a}\in{N}\right) \\ $$$$\rightarrow{n}=¿\:\left({n}\in{N}\right) \\ $$
Question Number 199187 Answers: 0 Comments: 1
$$\mathrm{x}\:\mathrm{is}\:\mathrm{a}\:\mathrm{negative}\:\mathrm{real}\:\mathrm{number}: \\ $$$$\mathrm{If}\:\:\mid\mathrm{x}−\mathrm{2}\mid=\mathrm{p} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{x}−\mathrm{p}=? \\ $$
Question Number 199165 Answers: 1 Comments: 0
Pg 52 Pg 53 Pg 54 Pg 55 Pg 56 Pg 57 Pg 58 Pg 59 Pg 60 Pg 61
Terms of Service
Privacy Policy
Contact: info@tinkutara.com