Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 57
Question Number 198252 Answers: 1 Comments: 2
Question Number 198244 Answers: 0 Comments: 0
Question Number 198243 Answers: 3 Comments: 0
$${find}\:{the}\:{sum}\:{of}\:{the}\:{first}\:{n}\:{terms}\:{from} \\ $$$$\mathrm{1},\:\mathrm{2}+\mathrm{3},\:\mathrm{4}+\mathrm{5}+\mathrm{6},\:\mathrm{7}+\mathrm{8}+\mathrm{9}+\mathrm{10},\:... \\ $$
Question Number 198197 Answers: 1 Comments: 1
$${please}\:{helpe} \\ $$$${sinz}\:=\:\mathrm{2}.\:{Find}\:{z} \\ $$
Question Number 198175 Answers: 1 Comments: 0
$${Prove}\:{The}\:{following}\:{Functional}\:{equation}: \\ $$$$\zeta\left({x},{s}\right)=\frac{\mathrm{2}\Gamma\left(\mathrm{1}−{s}\right)}{\left(\mathrm{2}\pi\right)^{\left(\mathrm{1}−{s}\right)} }\left\{{sin}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{cos}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]+{cos}\left(\frac{\pi{s}}{\mathrm{2}}\right)\underset{{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{{sin}\left(\mathrm{2}\pi{mx}\right)}{{m}^{\left(\mathrm{1}−{s}\right)} }\right]\right\} \\ $$
Question Number 198166 Answers: 3 Comments: 0
$${if}\:{f}\left({x}\right)={x}^{\mathrm{2}} +{bx}+{c} \\ $$$${f}\left({f}\left(\mathrm{1}\right)\right)={f}\left({f}\left(\mathrm{2}\right)\right)=\mathrm{0}\:{and}\:{f}\left(\mathrm{1}\right)\neq{f}\left(\mathrm{2}\right) \\ $$$${find}\:{f}\left(\mathrm{0}\right)=? \\ $$
Question Number 198147 Answers: 1 Comments: 0
$${if}\:{a},{x},{y},{b}\:{is}\:{an}\:{AP}\:{and}\:{a},{p},{q},{b}\:{is}\:{a}\:{GP}. \\ $$$${prove}\:{that}\:{xy}\geqslant{pq}. \\ $$$$\left({with}\:{a},\:{b}\:>\mathrm{0}\right) \\ $$
Question Number 198132 Answers: 1 Comments: 0
$${Solve}: \\ $$$$\frac{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}\boldsymbol{\mathrm{x}}−\mathrm{5}\right)}{\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}+\mathrm{2}\right)}=\mathrm{2} \\ $$
Question Number 198131 Answers: 1 Comments: 0
$$\mathrm{Resoudre} \\ $$$$\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}−\mathrm{3}\right)+\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}−\mathrm{2}\right)=\boldsymbol{\mathrm{log}}\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{x}}−\mathrm{21}\right) \\ $$$$ \\ $$
Question Number 198123 Answers: 3 Comments: 0
$$\mathrm{Determiner} \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{3}} \:\frac{\boldsymbol{\mathrm{x}}−\mathrm{3}}{\:^{\mathrm{3}} \sqrt{\boldsymbol{\mathrm{x}}+\mathrm{5}}\:−\mathrm{2}} \\ $$$$ \\ $$
Question Number 198103 Answers: 3 Comments: 0
$${solve}\:{for}\:{x},\:{y}\:\in{N} \\ $$$$\sqrt{{x}}+\sqrt{{y}}=\sqrt{\mathrm{2023}} \\ $$
Question Number 198063 Answers: 2 Comments: 0
$${solve}\:{for}\:{x},\:{y}\:\in{R} \\ $$$$\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}}+\sqrt{{y}^{\mathrm{2}} −\mathrm{6}{y}+\mathrm{9}}+\sqrt{{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4}}+\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{2}{xy}}=\mathrm{4} \\ $$
Question Number 198050 Answers: 1 Comments: 0
Question Number 198039 Answers: 1 Comments: 0
Question Number 198031 Answers: 3 Comments: 0
Question Number 198030 Answers: 1 Comments: 0
Question Number 198029 Answers: 0 Comments: 1
Question Number 198014 Answers: 1 Comments: 0
Question Number 197982 Answers: 2 Comments: 0
Question Number 197980 Answers: 1 Comments: 4
Question Number 197960 Answers: 1 Comments: 0
$$\mathrm{determiner}\:\mathrm{le}\:\mathrm{total}\:\mathrm{de}\:\mathrm{nombres}\:\mathrm{de}\: \\ $$$$\mathrm{5}\:\mathrm{chiffres}\:\mathrm{comprises}\:\mathrm{entre}\:\mathrm{10000}\:\mathrm{et}\: \\ $$$$\mathrm{50000}\:\:\mathrm{divisibles}\:\mathrm{simultanement}\:\mathrm{par} \\ $$$$\mathrm{5}\:\mathrm{et}\:\mathrm{9}\:\:\: \\ $$$$\left(\mathrm{sans}\:\mathrm{utiliser}\:\mathrm{les}\:\mathrm{formules}\:\mathrm{d}\:\mathrm{arrangement}\right. \\ $$$$\left.\mathrm{et}\:\mathrm{de}\:\mathrm{combinaison}\right) \\ $$$$ \\ $$
Question Number 197951 Answers: 0 Comments: 0
$$\:\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{{n}}{{n}^{\mathrm{4}} +{n}^{\mathrm{2}} +\mathrm{1}}\:−\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{n}^{\mathrm{2}} }{{n}^{\mathrm{8}} +{n}^{\mathrm{4}} +\mathrm{1}}\:=\:? \\ $$
Question Number 197935 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that} \\ $$$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}\right)!}\:=\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{27}} \\ $$
Question Number 197922 Answers: 0 Comments: 1
Question Number 197895 Answers: 1 Comments: 0
$${Solve}\:{the}\:{equation}: \\ $$$${x}^{\mathrm{4}} \:−\:{x}^{\mathrm{3}} \:−\:\mathrm{4}{x}^{\mathrm{2}} \:+\:\mathrm{3}{x}\:+\:\mathrm{2}\:=\:\mathrm{0} \\ $$
Question Number 197880 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{infinite}\:\mathrm{series} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \right)\:+\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{6}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{7}^{\mathrm{2}} \right)+ \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }\centerdot\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{8}} }\left(\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+\mathrm{15}^{\mathrm{2}} \right)+........ \\ $$
Pg 52 Pg 53 Pg 54 Pg 55 Pg 56 Pg 57 Pg 58 Pg 59 Pg 60 Pg 61
Terms of Service
Privacy Policy
Contact: info@tinkutara.com