Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 57
Question Number 200139 Answers: 2 Comments: 0
$$\mathrm{If} \\ $$$$\mathrm{x}\::\:\mathrm{y}\::\:\mathrm{z}\:=\:\frac{\mathrm{1}}{\mathrm{7}}\::\:\frac{\mathrm{1}}{\mathrm{3}}\::\:\frac{\mathrm{1}}{\mathrm{21}} \\ $$$$\mathrm{5x}\:−\:\mathrm{2y}\:+\:\mathrm{z}\:=\:\mathrm{16} \\ $$$$ \\ $$$$\mathrm{Find}:\:\:\:\mathrm{y}\:=\:? \\ $$
Question Number 200134 Answers: 0 Comments: 0
Question Number 200087 Answers: 1 Comments: 2
$$\:\:\mathrm{if}\:\omega\:\neq\:\mathrm{1}\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{aand}\:\mathrm{z}\:\mathrm{is}\:\mathrm{a}\: \\ $$$$\mathrm{complex}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that}\:\mid{z}\mid\:=\:\mathrm{1}\:\mathrm{then} \\ $$$$\:\:\mid\frac{\mathrm{2}+\mathrm{3}\omega+\mathrm{4}{z}\omega^{\mathrm{2}} }{\mathrm{4}\omega+\mathrm{3}\omega^{\mathrm{2}} {z}+\mathrm{2}{z}}\mid=\:? \\ $$
Question Number 200066 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\frac{\mathrm{1}\:+\:\mathrm{x}}{\:\sqrt{\mathrm{3}}}\:=\:\mathrm{3}\:\:\:\mathrm{find}\:\:\:\mathrm{x}\:+\:\frac{\mathrm{1}}{\mathrm{x}}\:−\:\mathrm{1}\:=\:? \\ $$
Question Number 200035 Answers: 1 Comments: 2
Question Number 200025 Answers: 3 Comments: 0
Question Number 200019 Answers: 1 Comments: 0
Question Number 200013 Answers: 0 Comments: 3
Question Number 200012 Answers: 0 Comments: 0
Question Number 199932 Answers: 2 Comments: 0
$$\mathrm{1}. \\ $$$$\mathrm{If}\:\:\:\mathrm{3}\:\centerdot\:\overline {\mathrm{ab}}\:+\:\overline {\mathrm{bc}}\:=\:\mathrm{115} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{max}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)=? \\ $$$$ \\ $$$$\mathrm{2}. \\ $$$$\mathrm{a},\mathrm{b},\mathrm{c}\in\mathbb{N} \\ $$$$\mathrm{If}\:\:\:\frac{\mathrm{a}}{\mathrm{2}}\:\:+\:\:\frac{\mathrm{b}}{\mathrm{3}}\:\:=\:\:\frac{\mathrm{c}}{\mathrm{4}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{min}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)=? \\ $$
Question Number 199923 Answers: 2 Comments: 0
Question Number 199900 Answers: 2 Comments: 0
Question Number 199898 Answers: 1 Comments: 0
Question Number 199862 Answers: 0 Comments: 0
$$\mathrm{consider}\:\mathrm{the}\:\mathrm{taylor}\:\mathrm{expansion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{3}} } \\ $$$$\mathrm{centered}\:\mathrm{at}\:\mathrm{x}\:=\:\mathrm{1}/\mathrm{2}\:\mathrm{then}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{convergence} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{power}\:\mathrm{series}\:\mathrm{repersentation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}\:\mathrm{is} \\ $$
Question Number 199893 Answers: 0 Comments: 2
Question Number 199890 Answers: 0 Comments: 0
Question Number 199889 Answers: 0 Comments: 0
Question Number 199888 Answers: 0 Comments: 0
Question Number 199840 Answers: 1 Comments: 0
Question Number 199837 Answers: 1 Comments: 0
Question Number 199836 Answers: 0 Comments: 3
Question Number 199775 Answers: 2 Comments: 0
Question Number 199774 Answers: 1 Comments: 0
Question Number 199772 Answers: 0 Comments: 0
Question Number 199770 Answers: 4 Comments: 0
Question Number 199752 Answers: 0 Comments: 0
Pg 52 Pg 53 Pg 54 Pg 55 Pg 56 Pg 57 Pg 58 Pg 59 Pg 60 Pg 61
Terms of Service
Privacy Policy
Contact: info@tinkutara.com