let n ≥ 2 ∈ Z and x_1 , x_2 , ..., x_n are a positive real numbers
such that Σ_(i=1) ^n x_i = n , prove that
Σ_(i=1) ^n (x_i ^n /(x_1 + ∙∙∙ + x_i ^ + ∙∙∙ + x_n )) ≥ (n/(n − 1))
if f:(0,∞)→(0,∞)
f continuous
and f((1/x)) + f((1/y)) = 2f((1/(x+y)))
∀ x,y > 0 then ∀ a,b > 0:
∫_a ^( b) ∫_a ^( b) ∫_a ^( b) f((1/(x+y+z)))dxdydz = (b−a)^2 ∫_a ^( b) f((1/x))dx
let a,b,c,d > 1
f : [a , b] → [c , d]
a continuous function
for which ∃λ ∈ (a , b)
such that
a ∫_a ^( 𝛌) f(x) dx + b ∫_b ^( 𝛌) f(x) dx ≥ a + c
then prove
∫_a ^( b) (x/(f(x))) dx ≤ ((1/a) + (1/b)) ((b^2 −a^2 −2)/2)