Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 5
Question Number 224029 Answers: 2 Comments: 0
Question Number 224028 Answers: 1 Comments: 0
Question Number 224018 Answers: 2 Comments: 0
$$\mathrm{x}\:\neq\:\mathrm{y} \\ $$$$\lambda\:\geqslant\:\mathrm{1} \\ $$$$\begin{cases}{\mathrm{x}\:+\:\lambda^{\mathrm{2}} \:=\:\left(\mathrm{y}\:−\:\lambda\right)^{\mathrm{2}} }\\{\mathrm{y}\:+\:\lambda^{\mathrm{2}} \:=\:\left(\mathrm{x}\:−\:\lambda\right)^{\mathrm{2}} }\end{cases} \\ $$$$\mathrm{Find}:\:\:\:\left(\frac{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} }{\mathrm{4}\lambda^{\mathrm{2}} \:−\:\mathrm{1}}\right)^{\mathrm{2025}} =\:\:? \\ $$
Question Number 224017 Answers: 0 Comments: 0
$$\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0} \\ $$$$\mathrm{xy}+\mathrm{yz}+\mathrm{zx}+\mathrm{2xyz}=\mathrm{1} \\ $$$$\mathrm{prove}\:\mathrm{that}: \\ $$$$\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}−\mathrm{y}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{1}−\mathrm{z}^{\mathrm{2}} }\:\leqslant\:\frac{\mathrm{3}\:\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$
Question Number 224016 Answers: 0 Comments: 0
$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{2}=\mathrm{abc} \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{a}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{b}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{7}+\mathrm{c}}}\:\leqslant\:\mathrm{1} \\ $$
Question Number 224015 Answers: 0 Comments: 0
$$\mathrm{a},\mathrm{b},\mathrm{c}>\mathrm{0} \\ $$$$\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{2}=\mathrm{abc} \\ $$$$\mathrm{prove}\:\mathrm{that}:\:\:\:\sqrt{\mathrm{a}}\:+\:\sqrt{\mathrm{b}}\:+\:\sqrt{\mathrm{c}}\:\leqslant\:\frac{\mathrm{3}}{\mathrm{2}}\:\sqrt{\mathrm{abc}} \\ $$
Question Number 223995 Answers: 1 Comments: 0
Question Number 223965 Answers: 2 Comments: 0
Question Number 223964 Answers: 3 Comments: 0
Question Number 223858 Answers: 1 Comments: 0
Question Number 223823 Answers: 3 Comments: 0
$$\sqrt{\mathrm{4}{x}+\mathrm{1}}+\sqrt{\mathrm{3}{x}−\mathrm{2}}=\mathrm{1} \\ $$$${x}=? \\ $$
Question Number 223822 Answers: 2 Comments: 0
$$\left(\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} \right) \\ $$$$\:{Rewrite}\:{in}\:{simplest}\:{radical}\:{form} \\ $$
Question Number 223804 Answers: 0 Comments: 3
Question Number 223800 Answers: 1 Comments: 0
$$\:\mathrm{Given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{14x}+\mathrm{40}}{\mathrm{g}\left(\mathrm{x}\right)}−\mathrm{43} \\ $$$$\:\mathrm{h}\left(\mathrm{x}\right)=\:\frac{\mathrm{g}\left(\mathrm{x}\right)+\mathrm{51}}{\mathrm{x}+\mathrm{4}} \\ $$$$\:\mathrm{m}\left(\mathrm{x}\right)=\:\frac{\mathrm{h}\left(\mathrm{x}\right)−\mathrm{9}}{\mathrm{x}−\mathrm{2}}\:,\:\mathrm{x}\neq\mathrm{2} \\ $$$$\:\mathrm{m}\left(\mathrm{2}\right)=\:\mathrm{2043}.\: \\ $$$$\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{divided}\:\mathrm{by}\:\mathrm{x}^{\mathrm{2}} +\mathrm{8x}−\mathrm{20}\: \\ $$$$\:\mathrm{gives}\:\mathrm{remainder}\:\mathrm{is}\:\mathrm{M}\left(\mathrm{x}\right)=\mathrm{ax}+\mathrm{b} \\ $$$$\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{M}\left(\mathrm{98}\right)=?\: \\ $$
Question Number 223734 Answers: 1 Comments: 0
Question Number 223703 Answers: 2 Comments: 0
Question Number 223700 Answers: 1 Comments: 0
$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 223685 Answers: 1 Comments: 0
$$\mathrm{25}^{{x}} −\mathrm{8}.\mathrm{5}^{{x}} =−\mathrm{16} \\ $$
Question Number 223655 Answers: 3 Comments: 4
Question Number 223636 Answers: 0 Comments: 0
$$\mathrm{Factor}\:\mathrm{the}\:\mathrm{following}\:\mathrm{expression}: \\ $$$$\left(\sqrt[{\mathrm{5}}]{\mathrm{arctan}\left({x}^{\mathrm{5}} +\mathrm{1}\right)}\right)^{{x}^{−{x}^{\mathrm{2}} } } \\ $$
Question Number 223626 Answers: 1 Comments: 6
$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{xy}=\mathrm{25}}\\{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{yz}=\mathrm{49}}\\{{z}^{\mathrm{2}} +{x}^{\mathrm{2}} +{zx}=\mathrm{64}}\end{cases} \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} −\mathrm{100}=?? \\ $$
Question Number 223615 Answers: 3 Comments: 0
$$\mathrm{40}^{{x}−\mathrm{1}} =\mathrm{2}^{\mathrm{2}{x}+\mathrm{1}} \\ $$
Question Number 223585 Answers: 1 Comments: 1
Question Number 223571 Answers: 2 Comments: 0
$$\mathrm{S}_{\mathrm{1}} \:=\:\mathrm{1}\centerdot\mathrm{1}!\:+\:\mathrm{2}\centerdot\mathrm{2}!\:+\:\mathrm{3}\centerdot\mathrm{3}!\:+...+\:\mathrm{16}\centerdot\mathrm{16}! \\ $$$$\mathrm{S}_{\mathrm{2}} \:=\:\mathrm{1}\centerdot\mathrm{1}!\:+\:\mathrm{2}\centerdot\mathrm{2}!\:+\:\mathrm{3}\centerdot\mathrm{3}!\:+...+\:\mathrm{14}\centerdot\mathrm{14}! \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{S}_{\mathrm{1}} }{\mathrm{S}_{\mathrm{2}} }\:=\:? \\ $$
Question Number 223569 Answers: 3 Comments: 0
Question Number 223508 Answers: 0 Comments: 0
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com