Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 46

Question Number 205256    Answers: 2   Comments: 2

Find: lim_(x→0) ((1/x)) = ?

$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:=\:? \\ $$

Question Number 207920    Answers: 2   Comments: 2

Given p,q ,r and s real positive numbers such that { ((p^2 +q^2 = r^2 +s^2 )),((p^2 +s^2 −ps = q^2 +r^2 +qr.)) :} Find ((pq+rs)/(ps+qr)) .

$$\:\:\:\:\mathrm{Given}\:\mathrm{p},\mathrm{q}\:,\mathrm{r}\:\mathrm{and}\:\mathrm{s}\:\mathrm{real}\:\mathrm{positive}\: \\ $$$$\:\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\:\:\begin{cases}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\:\mathrm{r}^{\mathrm{2}} +\mathrm{s}^{\mathrm{2}} }\\{\mathrm{p}^{\mathrm{2}} +\mathrm{s}^{\mathrm{2}} −\mathrm{ps}\:=\:\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} +\mathrm{qr}.}\end{cases} \\ $$$$\:\:\mathrm{Find}\:\:\frac{\mathrm{pq}+\mathrm{rs}}{\mathrm{ps}+\mathrm{qr}}\:. \\ $$

Question Number 205238    Answers: 1   Comments: 1

4^x + x = 260 find the possible values of x

$$\mathrm{4}^{{x}} \:+\:{x}\:=\:\mathrm{260} \\ $$$${find}\:{the}\:{possible}\:{values}\:{of}\:{x} \\ $$$$ \\ $$

Question Number 205220    Answers: 2   Comments: 0

cos^4 x − sin^4 x = cos^2 x ⇒ x = ?

$$\mathrm{cos}^{\mathrm{4}} \:\mathrm{x}\:−\:\mathrm{sin}^{\mathrm{4}} \:\mathrm{x}\:=\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{x} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$

Question Number 205219    Answers: 2   Comments: 0

{ ((sinx + cosx = 1)),((sinx − cosy = 1)) :} ⇒ x = ?

$$\begin{cases}{\mathrm{sinx}\:+\:\mathrm{cosx}\:=\:\mathrm{1}}\\{\mathrm{sinx}\:−\:\mathrm{cosy}\:=\:\mathrm{1}}\end{cases} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$

Question Number 205218    Answers: 1   Comments: 0

∣ sinx∣ + ∣ cosx ∣ = 1 ⇒ x = ?

$$\mid\:\mathrm{sinx}\mid\:+\:\mid\:\mathrm{cosx}\:\mid\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$

Question Number 205217    Answers: 1   Comments: 0

4 sin (x/2) ∙ cos (x/2) = 1 ⇒ x = ?

$$\mathrm{4}\:\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\:\centerdot\:\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$

Question Number 205211    Answers: 1   Comments: 0

Question Number 205203    Answers: 0   Comments: 0

If x,y,z>0 then in △ABC holds: Σ ((yz)/h_a ^2 ) ≤ (R^2 /(4F^2 )) (x + y + z)^2

$$\mathrm{If}\:\:\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\:\:\:\mathrm{then}\:\mathrm{in}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\Sigma\:\:\frac{\mathrm{yz}}{\mathrm{h}_{\boldsymbol{\mathrm{a}}} ^{\mathrm{2}} }\:\:\leqslant\:\:\frac{\mathrm{R}^{\mathrm{2}} }{\mathrm{4F}^{\mathrm{2}} }\:\:\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)^{\mathrm{2}} \\ $$

Question Number 205174    Answers: 2   Comments: 0

lim_(x→∞) {x^(1/x) } = ? where {.} is a fractional part of x

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{{x}^{\mathrm{1}/{x}} \right\}\:=\:?\:{where}\:\left\{.\right\}\:{is}\:{a}\:{fractional}\:{part}\:{of}\:{x} \\ $$

Question Number 205173    Answers: 1   Comments: 2

find S=Σ_(n=1) ^∞ (1/((a^2 +n^2 )^2 ))

$${find} \\ $$$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} +{n}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$

Question Number 205147    Answers: 2   Comments: 0

solve for z∈C zln z =z−2

$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$${z}\mathrm{ln}\:{z}\:={z}−\mathrm{2} \\ $$

Question Number 205130    Answers: 1   Comments: 1

Question Number 205116    Answers: 2   Comments: 0

let x^2 −3x+p = 0 has two positive roots ′a′ and ′b′ then inf((4/a)+(1/b)) is

$$\:\:\mathrm{let}\:\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{p}\:=\:\mathrm{0}\:\mathrm{has}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{roots} \\ $$$$\:'\mathrm{a}'\:\mathrm{and}\:'\mathrm{b}'\:\mathrm{then}\:\:\mathrm{inf}\left(\frac{\mathrm{4}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}\right)\:\mathrm{is}\: \\ $$

Question Number 205107    Answers: 0   Comments: 2

y = log_2 (sin(x)+cos(x)) ⇒ R_y = ?(Range )

$$ \\ $$$$\:\:\:\:{y}\:=\:{log}_{\mathrm{2}} \left({sin}\left({x}\right)+{cos}\left({x}\right)\right) \\ $$$$\:\:\:\Rightarrow\:\:{R}_{{y}} \:=\:?\left({Range}\:\right) \\ $$$$ \\ $$

Question Number 205101    Answers: 1   Comments: 0

given that there are real constant a,b, c, d such the identity λx^2 +2xy+y^2 = (ax+by)^2 +(cx+dy)^2 holds for all x,y ∈ R this implies (a) λ=−5 (b) λ≥1 (c)0<λ<1 (d) there is no such λ∈R

$$\:\:\mathrm{given}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{real}\:\mathrm{constant}\:\mathrm{a},\mathrm{b},\:\mathrm{c},\:\mathrm{d} \\ $$$$\:\:\mathrm{such}\:\mathrm{the}\:\mathrm{identity} \\ $$$$\:\lambda\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\:\left(\mathrm{ax}+\mathrm{by}\right)^{\mathrm{2}} +\left(\mathrm{cx}+\mathrm{dy}\right)^{\mathrm{2}} \:\mathrm{holds} \\ $$$$\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\:\in\:\mathbb{R}\:\mathrm{this}\:\mathrm{implies} \\ $$$$\left({a}\right)\:\lambda=−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\lambda\geqslant\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left({c}\right)\mathrm{0}<\lambda<\mathrm{1} \\ $$$$\:\left({d}\right)\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\lambda\in\mathbb{R} \\ $$

Question Number 205091    Answers: 0   Comments: 0

f:z ⇒ z f:z ⇒ z_n f:z_n ⇒ z_n How many homomorphism can be define

$${f}:{z}\:\Rightarrow\:{z} \\ $$$${f}:{z}\:\Rightarrow\:{z}_{{n}} \\ $$$${f}:{z}_{{n}} \Rightarrow\:{z}_{{n}} \\ $$$${How}\:{many}\:{homomorphism}\:{can}\:{be}\:{define} \\ $$

Question Number 205083    Answers: 1   Comments: 0

Question Number 205073    Answers: 6   Comments: 0

if a, b, c are the roots of f(x)=x^3 −2024x^2 +2024x+2024 find (1/(1−a^2 ))+(1/(1−b^2 ))+(1/(1−c^2 ))=?

$${if}\:{a},\:{b},\:{c}\:{are}\:{the}\:{roots}\:{of} \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{2024}{x}^{\mathrm{2}} +\mathrm{2024}{x}+\mathrm{2024} \\ $$$${find}\:\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−{c}^{\mathrm{2}} }=? \\ $$

Question Number 205092    Answers: 2   Comments: 0

Question Number 205051    Answers: 2   Comments: 0

Find all values of k such that the expression x^3 + kx^2 −7x+6 can be resolved into three linear real factors.

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{values}\:\mathrm{of}\:\:\mathrm{k}\:\mathrm{such}\:\mathrm{that}\:\mathrm{the} \\ $$$$\mathrm{expr}{e}\mathrm{ssion}\:\mathrm{x}^{\mathrm{3}} +\:\mathrm{kx}^{\mathrm{2}} −\mathrm{7x}+\mathrm{6}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{re}{s}\mathrm{olved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{real}\:\mathrm{factors}. \\ $$

Question Number 205053    Answers: 0   Comments: 1

Question Number 205021    Answers: 2   Comments: 0

x^2 + 5x +6 = 0 & x^2 + kx + 1 = 0 have a common root then k = ?

$${x}^{\mathrm{2}} \:+\:\mathrm{5}{x}\:+\mathrm{6}\:=\:\mathrm{0}\:\&\:{x}^{\mathrm{2}} \:+\:{kx}\:+\:\mathrm{1}\:=\:\mathrm{0}\:{have}\:{a}\: \\ $$$${common}\:{root}\:\mathrm{then}\:\:{k}\:=\:? \\ $$

Question Number 205018    Answers: 1   Comments: 2

For what value of ′k′ can be expression x^3 + kx^2 −7x +6 be resolved into three linear factors? (a) 0 (b) 1 (c) 2 (d) 3

$$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:\:'\mathrm{k}'\:\mathrm{can}\:\mathrm{be}\:\mathrm{expression}\:{x}^{\mathrm{3}} \:+\:{kx}^{\mathrm{2}} \:−\mathrm{7}{x}\:+\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\mathrm{be}\:\mathrm{resolved}\:\mathrm{into}\:\mathrm{three}\:\mathrm{linear}\:\mathrm{factors}? \\ $$$$\left(\mathrm{a}\right)\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{b}\right)\:\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{c}\right)\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{d}\right)\:\mathrm{3} \\ $$

Question Number 204999    Answers: 2   Comments: 0

Solve for x∈C x^3 +(4−3i)x^2 −(51+49i)x−442+170i=0

$$\mathrm{Solve}\:\mathrm{for}\:{x}\in\mathbb{C} \\ $$$${x}^{\mathrm{3}} +\left(\mathrm{4}−\mathrm{3i}\right){x}^{\mathrm{2}} −\left(\mathrm{51}+\mathrm{49i}\right){x}−\mathrm{442}+\mathrm{170i}=\mathrm{0} \\ $$

Question Number 204926    Answers: 0   Comments: 2

Prove that in any △ABC (m_a + m_b + m_c )^2 ≥ 9(√3) F

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{in}\:\mathrm{any}\:\bigtriangleup\mathrm{ABC} \\ $$$$\left(\mathrm{m}_{\boldsymbol{\mathrm{a}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{b}}} \:+\:\mathrm{m}_{\boldsymbol{\mathrm{c}}} \right)^{\mathrm{2}} \:\geqslant\:\mathrm{9}\sqrt{\mathrm{3}}\:\mathrm{F} \\ $$

  Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48      Pg 49      Pg 50   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com