Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 46

Question Number 205367    Answers: 1   Comments: 0

Question Number 205353    Answers: 2   Comments: 0

If ax^2 + bx + c = 0 had two roots p and q and p^2 + q^2 = p^3 + q^3 then show that b^3 − 2a^2 c + ab^2 = 3abc.

$$\mathrm{If}\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{had}\:\mathrm{two}\:\mathrm{roots}\:{p}\:\mathrm{and}\:{q} \\ $$$$\mathrm{and}\:{p}^{\mathrm{2}} \:+\:{q}^{\mathrm{2}} \:=\:{p}^{\mathrm{3}} \:+\:{q}^{\mathrm{3}} \:\mathrm{then}\:\mathrm{show}\:\mathrm{that} \\ $$$${b}^{\mathrm{3}} \:−\:\mathrm{2}{a}^{\mathrm{2}} {c}\:+\:{ab}^{\mathrm{2}} \:=\:\mathrm{3}{abc}. \\ $$

Question Number 205324    Answers: 3   Comments: 0

Compare: 37^(37) and 36^(38)

$$\mathrm{Compare}: \\ $$$$\mathrm{37}^{\mathrm{37}} \:\:\:\mathrm{and}\:\:\:\mathrm{36}^{\mathrm{38}} \\ $$

Question Number 205319    Answers: 0   Comments: 0

Question Number 205297    Answers: 2   Comments: 0

Find the′′ range ′′ of : i : f (x) =⌊ (( x)/( ⌊ x ⌋)) ⌋ ii: f(x) = (( x)/(⌊ x ⌋ + ⌊ −x ⌋))

$$ \\ $$$$\:\:\:{Find}\:\:{the}''\:{range}\:''\:{of}\:\:: \\ $$$$ \\ $$$$\:\:\:{i}\::\:\:\:{f}\:\left({x}\right)\:=\lfloor\:\frac{\:{x}}{\:\lfloor\:{x}\:\rfloor}\:\rfloor \\ $$$$\:\:\:{ii}:\:{f}\left({x}\right)\:=\:\frac{\:{x}}{\lfloor\:{x}\:\rfloor\:+\:\lfloor\:−{x}\:\rfloor} \\ $$$$\:\: \\ $$

Question Number 205273    Answers: 3   Comments: 0

If f(x−1)=2x+2 Find f(x)=?

$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)=\mathrm{2x}+\mathrm{2} \\ $$$$\mathrm{Find}\:\:\:\mathrm{f}\left(\mathrm{x}\right)=? \\ $$

Question Number 205256    Answers: 2   Comments: 2

Find: lim_(x→0) ((1/x)) = ?

$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{x}}\right)\:=\:? \\ $$

Question Number 207920    Answers: 2   Comments: 2

Given p,q ,r and s real positive numbers such that { ((p^2 +q^2 = r^2 +s^2 )),((p^2 +s^2 −ps = q^2 +r^2 +qr.)) :} Find ((pq+rs)/(ps+qr)) .

$$\:\:\:\:\mathrm{Given}\:\mathrm{p},\mathrm{q}\:,\mathrm{r}\:\mathrm{and}\:\mathrm{s}\:\mathrm{real}\:\mathrm{positive}\: \\ $$$$\:\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\:\:\begin{cases}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\:\mathrm{r}^{\mathrm{2}} +\mathrm{s}^{\mathrm{2}} }\\{\mathrm{p}^{\mathrm{2}} +\mathrm{s}^{\mathrm{2}} −\mathrm{ps}\:=\:\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} +\mathrm{qr}.}\end{cases} \\ $$$$\:\:\mathrm{Find}\:\:\frac{\mathrm{pq}+\mathrm{rs}}{\mathrm{ps}+\mathrm{qr}}\:. \\ $$

Question Number 205238    Answers: 1   Comments: 1

4^x + x = 260 find the possible values of x

$$\mathrm{4}^{{x}} \:+\:{x}\:=\:\mathrm{260} \\ $$$${find}\:{the}\:{possible}\:{values}\:{of}\:{x} \\ $$$$ \\ $$

Question Number 205220    Answers: 2   Comments: 0

cos^4 x − sin^4 x = cos^2 x ⇒ x = ?

$$\mathrm{cos}^{\mathrm{4}} \:\mathrm{x}\:−\:\mathrm{sin}^{\mathrm{4}} \:\mathrm{x}\:=\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{x} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$

Question Number 205219    Answers: 2   Comments: 0

{ ((sinx + cosx = 1)),((sinx − cosy = 1)) :} ⇒ x = ?

$$\begin{cases}{\mathrm{sinx}\:+\:\mathrm{cosx}\:=\:\mathrm{1}}\\{\mathrm{sinx}\:−\:\mathrm{cosy}\:=\:\mathrm{1}}\end{cases} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$

Question Number 205218    Answers: 1   Comments: 0

∣ sinx∣ + ∣ cosx ∣ = 1 ⇒ x = ?

$$\mid\:\mathrm{sinx}\mid\:+\:\mid\:\mathrm{cosx}\:\mid\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$

Question Number 205217    Answers: 1   Comments: 0

4 sin (x/2) ∙ cos (x/2) = 1 ⇒ x = ?

$$\mathrm{4}\:\mathrm{sin}\:\frac{\mathrm{x}}{\mathrm{2}}\:\centerdot\:\mathrm{cos}\:\frac{\mathrm{x}}{\mathrm{2}}\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{x}\:=\:? \\ $$

Question Number 205211    Answers: 1   Comments: 0

Question Number 205203    Answers: 0   Comments: 0

If x,y,z>0 then in △ABC holds: Σ ((yz)/h_a ^2 ) ≤ (R^2 /(4F^2 )) (x + y + z)^2

$$\mathrm{If}\:\:\:\mathrm{x},\mathrm{y},\mathrm{z}>\mathrm{0}\:\:\:\mathrm{then}\:\mathrm{in}\:\:\:\bigtriangleup\mathrm{ABC}\:\:\:\mathrm{holds}: \\ $$$$\Sigma\:\:\frac{\mathrm{yz}}{\mathrm{h}_{\boldsymbol{\mathrm{a}}} ^{\mathrm{2}} }\:\:\leqslant\:\:\frac{\mathrm{R}^{\mathrm{2}} }{\mathrm{4F}^{\mathrm{2}} }\:\:\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)^{\mathrm{2}} \\ $$

Question Number 205174    Answers: 2   Comments: 0

lim_(x→∞) {x^(1/x) } = ? where {.} is a fractional part of x

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{{x}^{\mathrm{1}/{x}} \right\}\:=\:?\:{where}\:\left\{.\right\}\:{is}\:{a}\:{fractional}\:{part}\:{of}\:{x} \\ $$

Question Number 205173    Answers: 1   Comments: 2

find S=Σ_(n=1) ^∞ (1/((a^2 +n^2 )^2 ))

$${find} \\ $$$${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} +{n}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$

Question Number 205147    Answers: 2   Comments: 0

solve for z∈C zln z =z−2

$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$${z}\mathrm{ln}\:{z}\:={z}−\mathrm{2} \\ $$

Question Number 205130    Answers: 1   Comments: 1

Question Number 205116    Answers: 2   Comments: 0

let x^2 −3x+p = 0 has two positive roots ′a′ and ′b′ then inf((4/a)+(1/b)) is

$$\:\:\mathrm{let}\:\mathrm{x}^{\mathrm{2}} −\mathrm{3x}+\mathrm{p}\:=\:\mathrm{0}\:\mathrm{has}\:\mathrm{two}\:\mathrm{positive}\:\mathrm{roots} \\ $$$$\:'\mathrm{a}'\:\mathrm{and}\:'\mathrm{b}'\:\mathrm{then}\:\:\mathrm{inf}\left(\frac{\mathrm{4}}{\mathrm{a}}+\frac{\mathrm{1}}{\mathrm{b}}\right)\:\mathrm{is}\: \\ $$

Question Number 205107    Answers: 0   Comments: 2

y = log_2 (sin(x)+cos(x)) ⇒ R_y = ?(Range )

$$ \\ $$$$\:\:\:\:{y}\:=\:{log}_{\mathrm{2}} \left({sin}\left({x}\right)+{cos}\left({x}\right)\right) \\ $$$$\:\:\:\Rightarrow\:\:{R}_{{y}} \:=\:?\left({Range}\:\right) \\ $$$$ \\ $$

Question Number 205101    Answers: 1   Comments: 0

given that there are real constant a,b, c, d such the identity λx^2 +2xy+y^2 = (ax+by)^2 +(cx+dy)^2 holds for all x,y ∈ R this implies (a) λ=−5 (b) λ≥1 (c)0<λ<1 (d) there is no such λ∈R

$$\:\:\mathrm{given}\:\mathrm{that}\:\mathrm{there}\:\mathrm{are}\:\mathrm{real}\:\mathrm{constant}\:\mathrm{a},\mathrm{b},\:\mathrm{c},\:\mathrm{d} \\ $$$$\:\:\mathrm{such}\:\mathrm{the}\:\mathrm{identity} \\ $$$$\:\lambda\mathrm{x}^{\mathrm{2}} +\mathrm{2xy}+\mathrm{y}^{\mathrm{2}} =\:\left(\mathrm{ax}+\mathrm{by}\right)^{\mathrm{2}} +\left(\mathrm{cx}+\mathrm{dy}\right)^{\mathrm{2}} \:\mathrm{holds} \\ $$$$\:\mathrm{for}\:\mathrm{all}\:\mathrm{x},\mathrm{y}\:\in\:\mathbb{R}\:\mathrm{this}\:\mathrm{implies} \\ $$$$\left({a}\right)\:\lambda=−\mathrm{5}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({b}\right)\:\lambda\geqslant\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\left({c}\right)\mathrm{0}<\lambda<\mathrm{1} \\ $$$$\:\left({d}\right)\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{such}\:\lambda\in\mathbb{R} \\ $$

Question Number 205091    Answers: 0   Comments: 0

f:z ⇒ z f:z ⇒ z_n f:z_n ⇒ z_n How many homomorphism can be define

$${f}:{z}\:\Rightarrow\:{z} \\ $$$${f}:{z}\:\Rightarrow\:{z}_{{n}} \\ $$$${f}:{z}_{{n}} \Rightarrow\:{z}_{{n}} \\ $$$${How}\:{many}\:{homomorphism}\:{can}\:{be}\:{define} \\ $$

Question Number 205083    Answers: 1   Comments: 0

Question Number 205073    Answers: 6   Comments: 0

if a, b, c are the roots of f(x)=x^3 −2024x^2 +2024x+2024 find (1/(1−a^2 ))+(1/(1−b^2 ))+(1/(1−c^2 ))=?

$${if}\:{a},\:{b},\:{c}\:{are}\:{the}\:{roots}\:{of} \\ $$$${f}\left({x}\right)={x}^{\mathrm{3}} −\mathrm{2024}{x}^{\mathrm{2}} +\mathrm{2024}{x}+\mathrm{2024} \\ $$$${find}\:\frac{\mathrm{1}}{\mathrm{1}−{a}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−{b}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{1}−{c}^{\mathrm{2}} }=? \\ $$

Question Number 205092    Answers: 2   Comments: 0

  Pg 41      Pg 42      Pg 43      Pg 44      Pg 45      Pg 46      Pg 47      Pg 48      Pg 49      Pg 50   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com