Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 4
Question Number 223400 Answers: 1 Comments: 0
$$\boldsymbol{{f}}\left(\mathrm{1}\right)=\mathrm{2025} \\ $$$$\underset{\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}{f}}\left(\boldsymbol{{k}}\right)=\boldsymbol{{n}}^{\mathrm{2}} .\boldsymbol{{f}}\left(\boldsymbol{{n}}\right) \\ $$$$\boldsymbol{{f}}\left(\mathrm{2025}\right)=? \\ $$
Question Number 223354 Answers: 0 Comments: 6
Question Number 223267 Answers: 3 Comments: 0
$$\boldsymbol{{r}},\boldsymbol{{s}},\boldsymbol{{t}}\:;\:\boldsymbol{{are}}\:\boldsymbol{{the}}\:\boldsymbol{{roots}}\:\boldsymbol{{of}}: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{5}\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\boldsymbol{{find}}: \\ $$$$\:\:\:\:\:\:\left(\boldsymbol{{r}}^{\mathrm{3}} β\mathrm{1}\right)\left(\boldsymbol{{s}}^{\mathrm{3}} β\mathrm{1}\right)\left(\boldsymbol{{t}}^{\mathrm{3}} β\mathrm{1}\right) \\ $$
Question Number 223261 Answers: 0 Comments: 1
Question Number 223240 Answers: 1 Comments: 0
$${x}^{{x}} ={i} \\ $$$${number}\:{of}\:{solutions}?? \\ $$
Question Number 223230 Answers: 3 Comments: 0
$$\mathrm{Maksimum}\:\left(\frac{\mathrm{x}^{\mathrm{2}} \:β\:\mathrm{4x}\:+\:\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}\right)\:=\:? \\ $$
Question Number 223216 Answers: 2 Comments: 0
Question Number 223203 Answers: 2 Comments: 0
$${Find}\:{x}\:{and}\:{y} \\ $$$$\:\:\:\:{ix}+{y}={ix}^{\mathrm{3}} β{y}^{\mathrm{3}} \\ $$$$\:\:\:{and}\: \\ $$$$\:\:\:\:{xy}\left({y}β{ix}\right)={c} \\ $$
Question Number 223189 Answers: 1 Comments: 3
$$\left(\boldsymbol{{x}}β\mathrm{1}\right)\left(\boldsymbol{{x}}^{\mathrm{2}} β\mathrm{2}\right)\left(\boldsymbol{{x}}^{\mathrm{3}} β\mathrm{3}\right)\left(\boldsymbol{{x}}^{\mathrm{4}} β\mathrm{4}\right)=\mathrm{36} \\ $$$$\boldsymbol{{x}}=? \\ $$
Question Number 223179 Answers: 1 Comments: 1
$$\mathrm{If}:\:\:\:\mathrm{xy}\:=\:\boldsymbol{\mathrm{e}}^{\frac{\boldsymbol{\pi}}{\mathrm{4}}} \\ $$$$\mathrm{Find}:\:\:\:\mathrm{tg}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{y}}\right)\right)\:\centerdot\:\mathrm{tg}\:\left(\mathrm{ln}\:\left(\frac{\mathrm{y}^{\mathrm{3}} }{\mathrm{x}}\right)\right)\:=\:? \\ $$
Question Number 223161 Answers: 2 Comments: 4
$${Solve}\:{for}\:{x}\:{if} \\ $$$$\:\sqrt{{x}+\mathrm{1}}+\sqrt{{x}β\mathrm{1}}=\mathrm{1} \\ $$
Question Number 223110 Answers: 1 Comments: 0
Question Number 223044 Answers: 0 Comments: 1
Question Number 222889 Answers: 1 Comments: 10
Question Number 222885 Answers: 3 Comments: 0
Question Number 222856 Answers: 1 Comments: 0
$$\boldsymbol{{find}}\:\boldsymbol{{the}}\:\boldsymbol{{possible}}\:\boldsymbol{{root}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}^{\mathrm{3}} β\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} β\mathrm{5}\boldsymbol{{x}}+\mathrm{6}=\mathrm{0} \\ $$$$\boldsymbol{{using}}\:\boldsymbol{{the}}\:\boldsymbol{{fixed}}\:\boldsymbol{{point}}\:\boldsymbol{{iteration}}\:\boldsymbol{{method}}? \\ $$
Question Number 222847 Answers: 1 Comments: 0
$$\boldsymbol{{let}}\:\boldsymbol{{f}}\left(\boldsymbol{{x}}\right)=\mathrm{1}.\mathrm{013}\boldsymbol{{x}}^{\mathrm{5}} β\mathrm{5}.\mathrm{262}\boldsymbol{{x}}^{\mathrm{3}} β\mathrm{0}.\mathrm{01732}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{0}.\mathrm{8389}\boldsymbol{{x}} \\ $$$$β\mathrm{1}.\mathrm{912}.\:\boldsymbol{{Evaluate}}\:\boldsymbol{{f}}\left(\mathrm{2}.\mathrm{279}\right)\:\boldsymbol{{by}}\:\boldsymbol{{first}}\:\boldsymbol{{calculating}} \\ $$$$\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{2}} ,\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{3}} ,\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{4}} \boldsymbol{{and}}\left(\mathrm{2}.\mathrm{279}\right)^{\mathrm{5}} \:\boldsymbol{{using}} \\ $$$$\boldsymbol{{four}}β\boldsymbol{{digit}}\:\boldsymbol{{round}}\:\boldsymbol{{arithmetic}}.\:\boldsymbol{{hence}},\boldsymbol{{compute}} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{absolute}}\:\boldsymbol{{and}}\:\boldsymbol{{relative}}\:\boldsymbol{{errors}}. \\ $$
Question Number 222829 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{3x}\:+\:\left[\mathrm{x}\right]}{\mathrm{2x}} \\ $$$$\mathrm{Find}\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrowβ\mathrm{5}^{+} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:β\:\underset{\boldsymbol{\mathrm{x}}\rightarrowβ\mathrm{5}^{β} } {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:? \\ $$
Question Number 222801 Answers: 2 Comments: 0
Question Number 222777 Answers: 1 Comments: 0
$$\mathrm{Simplify}: \\ $$$$\frac{\left(\mathrm{cos214}Β°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin146}Β°\right)\centerdot\left(\mathrm{cos10}Β°\:+\:\boldsymbol{\mathrm{i}}\:\mathrm{sin10}Β°\right)}{\left(\mathrm{cos66}Β°\:β\:\boldsymbol{\mathrm{i}}\:\mathrm{sin246}Β°\right)}\:=\:? \\ $$
Question Number 222754 Answers: 1 Comments: 1
Question Number 222743 Answers: 1 Comments: 0
$$\mathrm{Compare}: \\ $$$$\boldsymbol{\mathrm{a}}\:=\:\mathrm{arcctg}\:\sqrt{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{b}}\:=\:\mathrm{arccos}\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{c}}\:=\:\mathrm{arctg}\:\sqrt{\mathrm{2}} \\ $$
Question Number 222616 Answers: 1 Comments: 0
Question Number 222585 Answers: 3 Comments: 2
Question Number 222584 Answers: 0 Comments: 0
$${find}\:{the}\:{correct}\:{const}.\:{to}\:{preconst}.\:``\:{x}^{{n}} β\mathrm{2}=β{x}\:'' \\ $$
Question Number 222582 Answers: 2 Comments: 0
$$\mathrm{If}:\:\:\:\mathrm{a}_{\boldsymbol{\mathrm{i}}} \:>\:\mathrm{0}\:\:\:,\:\:\:\mathrm{b}_{\boldsymbol{\mathrm{i}}} \:>\:\mathrm{0}\:\:\:,\:\:\:\mathrm{i}\:=\:\overline {\mathrm{1},...,\mathrm{n}} \\ $$$$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\sqrt{\mathrm{a}_{\mathrm{1}} ^{\mathrm{2}} \:+\:\mathrm{b}_{\mathrm{1}} ^{\mathrm{2}} }\:+\:\sqrt{\mathrm{a}_{\mathrm{2}} ^{\mathrm{2}} \:+\:\mathrm{b}_{\mathrm{2}} ^{\mathrm{2}} }\:+...+\:\sqrt{\mathrm{a}_{\boldsymbol{\mathrm{n}}} ^{\mathrm{2}} \:+\:\mathrm{b}_{\boldsymbol{\mathrm{n}}} ^{\mathrm{2}} }\:\:\:\geqslant \\ $$$$\geqslant\:\sqrt{\left(\mathrm{a}_{\mathrm{1}} +\mathrm{a}_{\mathrm{2}} +...+\mathrm{a}_{\boldsymbol{\mathrm{n}}} \right)^{\mathrm{2}} \:+\:\left(\mathrm{b}_{\mathrm{1}} +\mathrm{b}_{\mathrm{2}} +...+\mathrm{b}_{\boldsymbol{\mathrm{n}}} \right)^{\mathrm{2}} } \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com