Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 4

Question Number 223655    Answers: 3   Comments: 4

Question Number 223636    Answers: 0   Comments: 0

Factor the following expression: (((arctan(x^5 +1)))^(1/5) )^x^(−x^2 )

$$\mathrm{Factor}\:\mathrm{the}\:\mathrm{following}\:\mathrm{expression}: \\ $$$$\left(\sqrt[{\mathrm{5}}]{\mathrm{arctan}\left({x}^{\mathrm{5}} +\mathrm{1}\right)}\right)^{{x}^{−{x}^{\mathrm{2}} } } \\ $$

Question Number 223626    Answers: 1   Comments: 6

{ ((x^2 +y^2 +xy=25)),((y^2 +z^2 +yz=49)),((z^2 +x^2 +zx=64)) :} (x+y+z)^2 −100=??

$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{xy}=\mathrm{25}}\\{{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +{yz}=\mathrm{49}}\\{{z}^{\mathrm{2}} +{x}^{\mathrm{2}} +{zx}=\mathrm{64}}\end{cases} \\ $$$$\left({x}+{y}+{z}\right)^{\mathrm{2}} −\mathrm{100}=?? \\ $$

Question Number 223615    Answers: 3   Comments: 0

40^(x−1) =2^(2x+1)

$$\mathrm{40}^{{x}−\mathrm{1}} =\mathrm{2}^{\mathrm{2}{x}+\mathrm{1}} \\ $$

Question Number 223585    Answers: 1   Comments: 1

Question Number 223571    Answers: 2   Comments: 0

S_1 = 1∙1! + 2∙2! + 3∙3! +...+ 16∙16! S_2 = 1∙1! + 2∙2! + 3∙3! +...+ 14∙14! Find: (S_1 /S_2 ) = ?

$$\mathrm{S}_{\mathrm{1}} \:=\:\mathrm{1}\centerdot\mathrm{1}!\:+\:\mathrm{2}\centerdot\mathrm{2}!\:+\:\mathrm{3}\centerdot\mathrm{3}!\:+...+\:\mathrm{16}\centerdot\mathrm{16}! \\ $$$$\mathrm{S}_{\mathrm{2}} \:=\:\mathrm{1}\centerdot\mathrm{1}!\:+\:\mathrm{2}\centerdot\mathrm{2}!\:+\:\mathrm{3}\centerdot\mathrm{3}!\:+...+\:\mathrm{14}\centerdot\mathrm{14}! \\ $$$$\mathrm{Find}:\:\:\:\frac{\mathrm{S}_{\mathrm{1}} }{\mathrm{S}_{\mathrm{2}} }\:=\:? \\ $$

Question Number 223569    Answers: 3   Comments: 0

Question Number 223508    Answers: 0   Comments: 0

Question Number 223487    Answers: 1   Comments: 0

Let Φ be the hyperbola xy = b², b ≠ 0, and P be a point on Φ. Let Q be the image of reflection of P about the origin. Construct a circle ω centred at P with radius PQ. ω cuts Φ at the points B, C, D, Q. Prove that ΔBCD is equilateral, no matter what the value of b is.

Let Φ be the hyperbola xy = b², b ≠ 0, and P be a point on Φ. Let Q be the image of reflection of P about the origin. Construct a circle ω centred at P with radius PQ. ω cuts Φ at the points B, C, D, Q. Prove that ΔBCD is equilateral, no matter what the value of b is.

Question Number 223483    Answers: 1   Comments: 0

(x−1)(x−2)=1 (x−1)^(15) −(1/((x−1)^(15) ))=??

$$\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)=\mathrm{1} \\ $$$$\left({x}−\mathrm{1}\right)^{\mathrm{15}} −\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)^{\mathrm{15}} }=?? \\ $$

Question Number 223474    Answers: 3   Comments: 1

(√(1+(√(1+x))))=(x)^(1/3)

$$\sqrt{\mathrm{1}+\sqrt{\mathrm{1}+{x}}}=\sqrt[{\mathrm{3}}]{{x}} \\ $$

Question Number 223459    Answers: 4   Comments: 0

solve for x∈R (√(25−10x−x^2 ))+(√(15−x^2 ))=2(√5)

$${solve}\:{for}\:{x}\in{R} \\ $$$$\sqrt{\mathrm{25}−\mathrm{10}{x}−{x}^{\mathrm{2}} }+\sqrt{\mathrm{15}−{x}^{\mathrm{2}} }=\mathrm{2}\sqrt{\mathrm{5}} \\ $$

Question Number 223429    Answers: 2   Comments: 1

....

$$.... \\ $$

Question Number 223424    Answers: 1   Comments: 3

Question Number 223386    Answers: 1   Comments: 0

Question Number 223374    Answers: 3   Comments: 0

Question Number 223405    Answers: 2   Comments: 0

Question Number 223403    Answers: 1   Comments: 1

Question Number 223400    Answers: 1   Comments: 0

f(1)=2025 𝚺_1 ^n f(k)=n^2 .f(n) f(2025)=?

$$\boldsymbol{{f}}\left(\mathrm{1}\right)=\mathrm{2025} \\ $$$$\underset{\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}{f}}\left(\boldsymbol{{k}}\right)=\boldsymbol{{n}}^{\mathrm{2}} .\boldsymbol{{f}}\left(\boldsymbol{{n}}\right) \\ $$$$\boldsymbol{{f}}\left(\mathrm{2025}\right)=? \\ $$

Question Number 223354    Answers: 0   Comments: 6

Question Number 223267    Answers: 3   Comments: 0

r,s,t ; are the roots of: x^3 +5x+1=0 find: (r^3 −1)(s^3 −1)(t^3 −1)

$$\boldsymbol{{r}},\boldsymbol{{s}},\boldsymbol{{t}}\:;\:\boldsymbol{{are}}\:\boldsymbol{{the}}\:\boldsymbol{{roots}}\:\boldsymbol{{of}}: \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{3}} +\mathrm{5}\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\boldsymbol{{find}}: \\ $$$$\:\:\:\:\:\:\left(\boldsymbol{{r}}^{\mathrm{3}} −\mathrm{1}\right)\left(\boldsymbol{{s}}^{\mathrm{3}} −\mathrm{1}\right)\left(\boldsymbol{{t}}^{\mathrm{3}} −\mathrm{1}\right) \\ $$

Question Number 223261    Answers: 0   Comments: 1

Question Number 223240    Answers: 1   Comments: 0

x^x =i number of solutions??

$${x}^{{x}} ={i} \\ $$$${number}\:{of}\:{solutions}?? \\ $$

Question Number 223230    Answers: 3   Comments: 0

Maksimum (((x^2 − 4x + 1)/(x^2 + 1))) = ?

$$\mathrm{Maksimum}\:\left(\frac{\mathrm{x}^{\mathrm{2}} \:−\:\mathrm{4x}\:+\:\mathrm{1}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}}\right)\:=\:? \\ $$

Question Number 223216    Answers: 2   Comments: 0

Question Number 223203    Answers: 2   Comments: 0

Find x and y ix+y=ix^3 −y^3 and xy(y−ix)=c

$${Find}\:{x}\:{and}\:{y} \\ $$$$\:\:\:\:{ix}+{y}={ix}^{\mathrm{3}} −{y}^{\mathrm{3}} \\ $$$$\:\:\:{and}\: \\ $$$$\:\:\:\:{xy}\left({y}−{ix}\right)={c} \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com