Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 363
Question Number 15927 Answers: 0 Comments: 5
Question Number 15916 Answers: 2 Comments: 2
Question Number 15869 Answers: 1 Comments: 1
$$\mathrm{If}\:{ax}^{\mathrm{2}} +\frac{{b}}{{x}}\geqslant{c}\:\mathrm{for}\:\mathrm{all}\:{x},{a},{b}>\mathrm{0}\:\mathrm{then} \\ $$$$\mathrm{prove}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{27}{ab}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{4}{c}^{\mathrm{2}} . \\ $$
Question Number 15865 Answers: 2 Comments: 0
$${a},{b},{c}\in\mathbb{R}^{+\:} \mathrm{andIf}\:{a}+{b}+{c}=\mathrm{18}\:\mathrm{then}\:\mathrm{maximum}\:\mathrm{value} \\ $$$$\mathrm{of}\:{a}^{\mathrm{2}} {b}^{\mathrm{3}} {c}^{\mathrm{4}} \:\mathrm{is} \\ $$
Question Number 15721 Answers: 1 Comments: 0
$${If}\:\:\:\:\boldsymbol{{x}}+\boldsymbol{{y}}+\boldsymbol{{z}}=\mathrm{1} \\ $$$$\:\:\:\:\:{with}\:\mathrm{0}<{x},\:{y},\:{z}\:<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\:{then}\:{find}\:{tbe}\:\:{range}\:{of}\:{values}\:{of} \\ $$$$\:\:\:\frac{\mathrm{1}}{\boldsymbol{{x}}+\boldsymbol{{y}}}+\frac{\mathrm{1}}{\boldsymbol{{y}}+\boldsymbol{{z}}}+\frac{\mathrm{1}}{\boldsymbol{{z}}+\boldsymbol{{x}}}\:. \\ $$
Question Number 15656 Answers: 1 Comments: 0
$$\mathrm{Solve}\::\:\mathrm{0}\:\leqslant\:{x}^{\mathrm{2}} \:−\:\mathrm{5}{x}\:+\:\mathrm{7}\:<\:\mathrm{1} \\ $$
Question Number 15570 Answers: 2 Comments: 1
$$\mathrm{Solve}:\:\:\:\mathrm{2}^{\mathrm{x}} \:=\:\mathrm{x}^{\mathrm{4}} \\ $$
Question Number 15504 Answers: 1 Comments: 3
$$\mathrm{Solve}\:\lceil{x}^{\mathrm{2}} \rceil=\left(\lfloor{x}\rfloor\right)^{\mathrm{2}} +\mathrm{2}{x} \\ $$
Question Number 15501 Answers: 1 Comments: 0
$$\mathrm{Solve} \\ $$$${x}^{\mathrm{3}} −\lfloor{x}\rfloor=\mathrm{3} \\ $$
Question Number 15497 Answers: 1 Comments: 5
$${P}=\underset{{n}\in\mathbb{P}} {\overset{\infty} {\sum}}{n}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{Q}=\underset{{n}\notin\mathbb{P}} {\overset{\infty} {\sum}}{n} \\ $$$${P}=\mathrm{2}+\mathrm{3}+\mathrm{5}+\mathrm{7}+... \\ $$$${Q}=\mathrm{1}+\mathrm{4}+\mathrm{6}+\mathrm{8}+... \\ $$$$\: \\ $$$$\mathrm{Is}\:{P}>{Q}?\:\:\:\mathrm{Is}\:{Q}>{P}? \\ $$
Question Number 15234 Answers: 0 Comments: 2
$$\mathrm{A}\:\mathrm{question}\:\mathrm{related}\:\mathrm{to}\:\mathrm{Q}.\mathrm{15184} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{of}\:\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{ln}\:\mathrm{x}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} \\ $$
Question Number 15051 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{simultaneously} \\ $$$$ \\ $$$$\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{6}\:\:\:\:\:\:\:\:\:\:\:\:\:\:............\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{3}} \:=\:\mathrm{92}\:\:\:\:\:\:\:\:\:..........\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{x}\:−\:\mathrm{y}\:=\:\mathrm{z}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...........\:\mathrm{equation}\:\left(\mathrm{iii}\right) \\ $$
Question Number 14988 Answers: 0 Comments: 2
$${Solve}\:{on}\:\mathbb{Z}_{\mathrm{4}} \: \\ $$$${ax}+{b}=\left[\mathrm{0}\right]_{\mathrm{4}} \:\:{a},{b}\in\mathbb{Z}_{\mathrm{4}} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\left[\mathrm{0}\right]_{\mathrm{4}} \:\:{a},{b},{c}\in\mathbb{Z}_{\mathrm{4}} \\ $$
Question Number 14811 Answers: 1 Comments: 0
$${why}\:\:\:\:\:\sqrt{{x}^{\mathrm{2}} }=\mid{x}\mid\:\:\:\:?\: \\ $$
Question Number 14775 Answers: 1 Comments: 0
$$\mathrm{Using}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{theorem}\:\mathrm{to}\:\mathrm{factorize}\:\mathrm{completely}\:\mathrm{the}\:\mathrm{expression}\: \\ $$$$\mathrm{x}^{\mathrm{3}} \left(\mathrm{y}\:−\:\mathrm{z}\right)\:+\:\mathrm{y}^{\mathrm{3}} \left(\mathrm{z}\:−\:\mathrm{x}\right)\:+\:\mathrm{z}^{\mathrm{3}} \left(\mathrm{x}\:−\:\mathrm{y}\right)\: \\ $$
Question Number 14747 Answers: 1 Comments: 0
$$\epsilon>\mathrm{0} \\ $$$$\mathrm{6}−\epsilon\leqslant{xy}\leqslant\mathrm{6}+\epsilon \\ $$$$\mathrm{5}−\epsilon\leqslant{x}+{y}\leqslant\mathrm{5}+\epsilon \\ $$$${Find}\:{x}\:\&\:{y} \\ $$
Question Number 14594 Answers: 1 Comments: 0
Question Number 14559 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x} \\ $$$$\frac{\mathrm{6x}\:+\:\mathrm{2a}\:+\:\mathrm{3b}\:+\:\mathrm{c}\:}{\mathrm{6x}\:+\:\mathrm{2a}\:−\:\mathrm{3b}\:−\:\mathrm{c}}\:=\:\frac{\mathrm{2x}\:+\:\mathrm{6a}\:+\:\mathrm{b}\:+\:\mathrm{3c}}{\mathrm{2x}\:+\:\mathrm{6a}\:−\:\mathrm{b}\:−\:\mathrm{3c}} \\ $$
Question Number 14535 Answers: 2 Comments: 6
Question Number 14521 Answers: 0 Comments: 0
Question Number 14491 Answers: 1 Comments: 0
$$\sqrt{\mathrm{25}} \\ $$$$ \\ $$
Question Number 14483 Answers: 0 Comments: 8
$$\mathrm{x}^{\mathrm{y}} +\mathrm{y}^{\mathrm{x}} =\mathrm{3}.....\left(\mathrm{1}\right) \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{3}.....\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\mathrm{solve}\:\mathrm{the}\:\mathrm{equation} \\ $$
Question Number 14435 Answers: 0 Comments: 0
$$\int{e}^{−{x}^{\mathrm{2}} } {dx}=? \\ $$
Question Number 14398 Answers: 1 Comments: 0
$$\mathrm{Solve}:\: \\ $$$$\frac{\mathrm{7}}{\mathrm{2}}\:+\:\frac{\mathrm{3y}}{\mathrm{x}\:+\:\mathrm{y}}\:=\:\sqrt{\mathrm{x}}\:+\:\mathrm{4}\sqrt{\mathrm{y}}\:\:\:\:\:\:\:\:\:\:\:\:..........\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)\left(\mathrm{x}\:+\:\mathrm{1}\right)\:=\:\mathrm{4}\:+\:\mathrm{2xy}\left(\mathrm{x}\:−\:\mathrm{1}\right)\:\:\:\:..........\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$
Question Number 14396 Answers: 1 Comments: 2
Question Number 14354 Answers: 1 Comments: 0
Pg 358 Pg 359 Pg 360 Pg 361 Pg 362 Pg 363 Pg 364 Pg 365 Pg 366 Pg 367
Terms of Service
Privacy Policy
Contact: info@tinkutara.com