Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 363

Question Number 19313    Answers: 1   Comments: 0

Prove that ∣z_1 ± z_2 ∣^2 = ∣z_2 ∣^2 + ∣z_1 ∣^2 ± 2Re(z_1 z_2 ^ ) = ∣z_1 ∣^2 + ∣z_2 ∣^2 ± 2Re(z_1 ^ .z_2 )

$$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:\pm\:{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:=\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:\pm \\ $$$$\mathrm{2Re}\left({z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} \right)\:=\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:\pm\:\mathrm{2Re}\left(\bar {{z}}_{\mathrm{1}} .{z}_{\mathrm{2}} \right) \\ $$

Question Number 19312    Answers: 1   Comments: 0

Product of n, n^(th) roots of unity = 1.α.α^2 .α^3 ..... α^(n−1) = (−1)^(n−1) Why? How to get RHS?

$$\mathrm{Product}\:\mathrm{of}\:{n},\:{n}^{\mathrm{th}} \:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity} \\ $$$$=\:\mathrm{1}.\alpha.\alpha^{\mathrm{2}} .\alpha^{\mathrm{3}} \:.....\:\alpha^{{n}−\mathrm{1}} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \\ $$$$\mathrm{Why}?\:\mathrm{How}\:\mathrm{to}\:\mathrm{get}\:\mathrm{RHS}? \\ $$

Question Number 19250    Answers: 0   Comments: 2

Why arg(z) + arg(z^ ) = 2kπ, k ∈ Z? Shouldn′t it be always 0?

$$\mathrm{Why}\:\mathrm{arg}\left({z}\right)\:+\:\mathrm{arg}\left(\bar {{z}}\right)\:=\:\mathrm{2}{k}\pi,\:{k}\:\in\:{Z}? \\ $$$$\mathrm{Shouldn}'\mathrm{t}\:\mathrm{it}\:\mathrm{be}\:\boldsymbol{\mathrm{always}}\:\mathrm{0}? \\ $$

Question Number 19247    Answers: 1   Comments: 2

Question Number 19245    Answers: 1   Comments: 1

Let f(x) be a quadratic polynomial with integer coefficients such that f(0) and f(1) are odd integers. Prove that the equation f(x) = 0 does not have an integer solution.

$$\mathrm{Let}\:{f}\left({x}\right)\:\mathrm{be}\:\mathrm{a}\:\mathrm{quadratic}\:\mathrm{polynomial} \\ $$$$\mathrm{with}\:\mathrm{integer}\:\mathrm{coefficients}\:\mathrm{such}\:\mathrm{that}\:{f}\left(\mathrm{0}\right) \\ $$$$\mathrm{and}\:{f}\left(\mathrm{1}\right)\:\mathrm{are}\:\mathrm{odd}\:\mathrm{integers}.\:\mathrm{Prove}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{equation}\:{f}\left({x}\right)\:=\:\mathrm{0}\:\mathrm{does}\:\mathrm{not}\:\mathrm{have}\:\mathrm{an} \\ $$$$\mathrm{integer}\:\mathrm{solution}. \\ $$

Question Number 19215    Answers: 1   Comments: 0

STATEMENT-1 : For every natural number n ≥ 2, (1/(√1)) + (1/(√2)) + ..... (1/(√n)) > (√n) and STATEMENT-2 : For every natural number n ≥ 2, (√(n(n + 1))) < n + 1

$$\mathrm{STATEMENT}-\mathrm{1}\::\:\mathrm{For}\:\mathrm{every}\:\mathrm{natural} \\ $$$$\mathrm{number}\:{n}\:\geqslant\:\mathrm{2},\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}}}\:+\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+\:.....\:\frac{\mathrm{1}}{\sqrt{{n}}}\:>\:\sqrt{{n}} \\ $$$$\boldsymbol{\mathrm{and}} \\ $$$$\mathrm{STATEMENT}-\mathrm{2}\::\:\mathrm{For}\:\mathrm{every}\:\mathrm{natural} \\ $$$$\mathrm{number}\:{n}\:\geqslant\:\mathrm{2},\:\sqrt{{n}\left({n}\:+\:\mathrm{1}\right)}\:<\:{n}\:+\:\mathrm{1} \\ $$

Question Number 19204    Answers: 0   Comments: 1

If L= [((1 0 0)),((3 1 0)),((2 4 1)) ]and B= [(3),(2),(1) ] x_1 =−2 ; x_2 =1 ; x_3 =5 find U (numerical analysis)

$$\mathrm{If}\:\mathrm{L}=\begin{bmatrix}{\mathrm{1}\:\:\mathrm{0}\:\:\mathrm{0}}\\{\mathrm{3}\:\:\mathrm{1}\:\:\mathrm{0}}\\{\mathrm{2}\:\:\mathrm{4}\:\:\mathrm{1}}\end{bmatrix}\mathrm{and}\:\mathrm{B}=\begin{bmatrix}{\mathrm{3}}\\{\mathrm{2}}\\{\mathrm{1}}\end{bmatrix} \\ $$$$\mathrm{x}_{\mathrm{1}} =−\mathrm{2}\:;\:\mathrm{x}_{\mathrm{2}} =\mathrm{1}\:;\:\mathrm{x}_{\mathrm{3}} =\mathrm{5} \\ $$$$\mathrm{find}\:\mathrm{U} \\ $$$$\left(\mathrm{numerical}\:\mathrm{analysis}\right) \\ $$$$ \\ $$

Question Number 19198    Answers: 1   Comments: 7

Find all integer solutions of the system: 35x + 63y + 45z = 1, ∣x∣ < 9, ∣y∣ < 5, ∣z∣ < 7.

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{integer}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{system}: \\ $$$$\mathrm{35}{x}\:+\:\mathrm{63}{y}\:+\:\mathrm{45}{z}\:=\:\mathrm{1},\:\mid{x}\mid\:<\:\mathrm{9},\:\mid{y}\mid\:<\:\mathrm{5}, \\ $$$$\mid{z}\mid\:<\:\mathrm{7}. \\ $$

Question Number 19171    Answers: 1   Comments: 1

log_(√2) (√(2(√(2(√(2(√(2 ))))))))

$${log}_{\sqrt{\mathrm{2}}} \:\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\:\:\:\:}}}} \\ $$

Question Number 19135    Answers: 1   Comments: 0

solve for x: 2^(∣x+2∣) −∣2^(x+1) −1∣=2^(x+1) +1

$${solve}\:{for}\:{x}: \\ $$$$\mathrm{2}^{\mid{x}+\mathrm{2}\mid} −\mid\mathrm{2}^{{x}+\mathrm{1}} −\mathrm{1}\mid=\mathrm{2}^{{x}+\mathrm{1}} +\mathrm{1} \\ $$

Question Number 19123    Answers: 1   Comments: 0

{ ((xf(x)−g(x)+h(x)=2x+1)),((f(x)−(2x−2)g(x)−3h(x)=x)),((ln (x)f(x)−(x−3)h(x)=1)) :} Find f(x),g(x),h(x)

$$\begin{cases}{\mathrm{xf}\left(\mathrm{x}\right)−\mathrm{g}\left(\mathrm{x}\right)+\mathrm{h}\left(\mathrm{x}\right)=\mathrm{2x}+\mathrm{1}}\\{\mathrm{f}\left(\mathrm{x}\right)−\left(\mathrm{2x}−\mathrm{2}\right)\mathrm{g}\left(\mathrm{x}\right)−\mathrm{3h}\left(\mathrm{x}\right)=\mathrm{x}}\\{\mathrm{ln}\:\left(\mathrm{x}\right)\mathrm{f}\left(\mathrm{x}\right)−\left(\mathrm{x}−\mathrm{3}\right)\mathrm{h}\left(\mathrm{x}\right)=\mathrm{1}}\end{cases} \\ $$$$\mathrm{Find}\:\mathrm{f}\left(\mathrm{x}\right),\mathrm{g}\left(\mathrm{x}\right),\mathrm{h}\left(\mathrm{x}\right) \\ $$

Question Number 19121    Answers: 0   Comments: 0

Question Number 19101    Answers: 0   Comments: 3

A polynomial f(x) with rational coefficients leaves remainder 15, when divided by x − 3 and remainder 2x + 1, when divided by (x − 1)^2 . Find the remainder when f(x) is divided by (x − 3)(x − 1)^2 .

$$\mathrm{A}\:\mathrm{polynomial}\:{f}\left({x}\right)\:\mathrm{with}\:\mathrm{rational} \\ $$$$\mathrm{coefficients}\:\mathrm{leaves}\:\mathrm{remainder}\:\mathrm{15},\:\mathrm{when} \\ $$$$\mathrm{divided}\:\mathrm{by}\:{x}\:−\:\mathrm{3}\:\mathrm{and}\:\mathrm{remainder}\:\mathrm{2}{x}\:+\:\mathrm{1}, \\ $$$$\mathrm{when}\:\mathrm{divided}\:\mathrm{by}\:\left({x}\:−\:\mathrm{1}\right)^{\mathrm{2}} .\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{remainder}\:\mathrm{when}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\left({x}\:−\:\mathrm{3}\right)\left({x}\:−\:\mathrm{1}\right)^{\mathrm{2}} . \\ $$

Question Number 19095    Answers: 0   Comments: 3

Question Number 19063    Answers: 2   Comments: 0

find the possible values of x if ((8^x +27^x )/(12^x +18^x ))=(7/6)

$$\mathrm{find}\:\mathrm{the}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{if} \\ $$$$\frac{\mathrm{8}^{\mathrm{x}} +\mathrm{27}^{\mathrm{x}} }{\mathrm{12}^{\mathrm{x}} +\mathrm{18}^{\mathrm{x}} }=\frac{\mathrm{7}}{\mathrm{6}} \\ $$

Question Number 19073    Answers: 0   Comments: 0

Question Number 18979    Answers: 0   Comments: 0

Question Number 18961    Answers: 1   Comments: 0

Find arg(z), z = i^i^i .

$$\mathrm{Find}\:\mathrm{arg}\left({z}\right),\:{z}\:=\:{i}^{{i}^{{i}} } . \\ $$

Question Number 18916    Answers: 0   Comments: 0

x^2 −7x+12<mod(x−4)

$${x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{12}<{mod}\left({x}−\mathrm{4}\right) \\ $$

Question Number 18864    Answers: 2   Comments: 1

Question Number 18885    Answers: 0   Comments: 0

Question Number 18798    Answers: 1   Comments: 0

Question Number 18779    Answers: 0   Comments: 2

If (1/(2x))+(1/2)((1/(2x))+(1/2)((1/(2x))+(1/2)((1/(2x))+......=y what does x equals? a)1/2 b)2/4 c)1 d)1/4

$$\mathrm{If}\:\:\frac{\mathrm{1}}{\mathrm{2x}}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2x}}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2x}}+\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2x}}+......=\mathrm{y}\right.\right.\right. \\ $$$$\mathrm{what}\:\mathrm{does}\:\mathrm{x}\:\mathrm{equals}? \\ $$$$ \\ $$$$\left.\mathrm{a}\right)\mathrm{1}/\mathrm{2} \\ $$$$\left.\mathrm{b}\right)\mathrm{2}/\mathrm{4} \\ $$$$\left.\mathrm{c}\right)\mathrm{1} \\ $$$$\left.\mathrm{d}\right)\mathrm{1}/\mathrm{4} \\ $$

Question Number 18704    Answers: 1   Comments: 0

Question Number 18640    Answers: 1   Comments: 1

Question Number 18606    Answers: 0   Comments: 0

(1/3)+(3/(3×7))+(5/(3×7×11))+(7/(3×7×11×15))+...n terms

$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{3}×\mathrm{7}}+\frac{\mathrm{5}}{\mathrm{3}×\mathrm{7}×\mathrm{11}}+\frac{\mathrm{7}}{\mathrm{3}×\mathrm{7}×\mathrm{11}×\mathrm{15}}+...{n}\: \\ $$$$\:{terms} \\ $$

  Pg 358      Pg 359      Pg 360      Pg 361      Pg 362      Pg 363      Pg 364      Pg 365      Pg 366      Pg 367   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com