Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 357

Question Number 19729    Answers: 1   Comments: 0

2x + 9y^2 = 4 2x^2 − 45y^2 + xy = 0 Find the value of xy

$$\mathrm{2}{x}\:+\:\mathrm{9}{y}^{\mathrm{2}} \:=\:\mathrm{4} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:−\:\mathrm{45}{y}^{\mathrm{2}} \:+\:{xy}\:=\:\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{xy} \\ $$

Question Number 19700    Answers: 1   Comments: 0

What is the maximum possible value of k for which 2013 can be written as a sum of k consecutive positive integers?

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{possible}\:\mathrm{value}\:\mathrm{of} \\ $$$${k}\:\mathrm{for}\:\mathrm{which}\:\mathrm{2013}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\:\mathrm{a} \\ $$$$\mathrm{sum}\:\mathrm{of}\:{k}\:\mathrm{consecutive}\:\mathrm{positive}\:\mathrm{integers}? \\ $$

Question Number 19698    Answers: 1   Comments: 0

Let f(x) = x^3 − 3x + b and g(x) = x^2 + bx − 3, where b is a real number. What is the sum of all possible values of b for which the equations f(x) = 0 and g(x) = 0 have a common root?

$$\mathrm{Let}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:−\:\mathrm{3}{x}\:+\:{b}\:\mathrm{and}\:{g}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:+ \\ $$$${bx}\:−\:\mathrm{3},\:\mathrm{where}\:{b}\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{number}.\:\mathrm{What} \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{values}\:\mathrm{of}\:{b}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{the}\:\mathrm{equations}\:{f}\left({x}\right)\:=\:\mathrm{0}\:\mathrm{and}\:{g}\left({x}\right) \\ $$$$=\:\mathrm{0}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common}\:\mathrm{root}? \\ $$

Question Number 22315    Answers: 0   Comments: 0

Prove that the greatest coefficient in the expansion of (x_1 +x_2 +x_3 +...+x_k )^n = ((n!)/((q!)^(k−r) [(q+1)!]^r )) , where n = qk + r, 0 ≤ r ≤ k − 1

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in} \\ $$$$\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left({x}_{\mathrm{1}} +{x}_{\mathrm{2}} +{x}_{\mathrm{3}} +...+{x}_{{k}} \right)^{{n}} \\ $$$$=\:\frac{{n}!}{\left({q}!\right)^{{k}−{r}} \left[\left({q}+\mathrm{1}\right)!\right]^{{r}} }\:,\:\mathrm{where}\:{n}\:=\:{qk}\:+\:{r}, \\ $$$$\mathrm{0}\:\leqslant\:{r}\:\leqslant\:{k}\:−\:\mathrm{1} \\ $$

Question Number 19696    Answers: 1   Comments: 0

Let m be the smallest odd positive integer for which 1 + 2 + ... + m is a square of an integer and let n be the smallest even positive integer for which 1 + 2 + ... + n is a square of an integer. What is the value of m + n?

$$\mathrm{Let}\:{m}\:\mathrm{be}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{odd}\:\mathrm{positive} \\ $$$$\mathrm{integer}\:\mathrm{for}\:\mathrm{which}\:\mathrm{1}\:+\:\mathrm{2}\:+\:...\:+\:{m}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{square}\:\mathrm{of}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{and}\:\mathrm{let}\:{n}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{smallest}\:\mathrm{even}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{1}\:+\:\mathrm{2}\:+\:...\:+\:{n}\:\mathrm{is}\:\mathrm{a}\:\mathrm{square}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{integer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{m}\:+\:{n}? \\ $$

Question Number 22313    Answers: 1   Comments: 2

Question Number 19690    Answers: 1   Comments: 0

If ∣z − (4/z)∣ = 2, then find the maximum value of ∣z∣.

$$\mathrm{If}\:\mid{z}\:−\:\frac{\mathrm{4}}{{z}}\mid\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mid{z}\mid. \\ $$

Question Number 19786    Answers: 1   Comments: 0

For natural numbers x and y, let (x, y) denote the greatest common divisor of x and y. How many pairs of natural numbers x and y with x ≤ y satisfy the equation xy = x + y + (x, y)?

$$\mathrm{For}\:\mathrm{natural}\:\mathrm{numbers}\:{x}\:\mathrm{and}\:{y},\:\mathrm{let}\:\left({x},\:{y}\right) \\ $$$$\mathrm{denote}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{common}\:\mathrm{divisor}\:\mathrm{of} \\ $$$${x}\:\mathrm{and}\:{y}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{natural} \\ $$$$\mathrm{numbers}\:{x}\:\mathrm{and}\:{y}\:\mathrm{with}\:{x}\:\leqslant\:{y}\:\mathrm{satisfy}\:\mathrm{the} \\ $$$$\mathrm{equation}\:{xy}\:=\:{x}\:+\:{y}\:+\:\left({x},\:{y}\right)? \\ $$

Question Number 19785    Answers: 1   Comments: 0

If x^((x^4 )) = 4, what is the value of x^((x^2 )) + x^((x^8 )) ?

$$\mathrm{If}\:{x}^{\left({x}^{\mathrm{4}} \right)} \:=\:\mathrm{4},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$${x}^{\left({x}^{\mathrm{2}} \right)} \:+\:{x}^{\left({x}^{\mathrm{8}} \right)} ? \\ $$

Question Number 19688    Answers: 1   Comments: 0

The vertices of a square are z_1 , z_2 , z_3 and z_4 taken in the anticlockwise order, then z_3 = (1) −iz_1 + (1 + i)z_2 (2) iz_1 + (1 + i)z_2 (3) z_1 + (1 + i)z_2 (4) (1 + i)z_1 + z_2

$$\mathrm{The}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:\mathrm{are}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \\ $$$$\mathrm{and}\:{z}_{\mathrm{4}} \:\mathrm{taken}\:\mathrm{in}\:\mathrm{the}\:\mathrm{anticlockwise}\:\mathrm{order}, \\ $$$$\mathrm{then}\:{z}_{\mathrm{3}} \:= \\ $$$$\left(\mathrm{1}\right)\:−{iz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:{iz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:{z}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{2}} \\ $$$$\left(\mathrm{4}\right)\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \\ $$

Question Number 19687    Answers: 1   Comments: 0

Let z_1 , z_2 , z_3 be three vertices of an equilateral triangle circumscribing the circle ∣z∣ = (1/2). If z_1 = (1/2) + (((√3)i)/2) and z_1 , z_2 , z_3 are in anticlockwise sense then z_2 is

$$\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{three}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{circumscribing}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mid{z}\mid\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\:\mathrm{If}\:{z}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\:\mathrm{and}\:{z}_{\mathrm{1}} , \\ $$$${z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{anticlockwise}\:\mathrm{sense}\:\mathrm{then}\:{z}_{\mathrm{2}} \:\mathrm{is} \\ $$

Question Number 19646    Answers: 0   Comments: 1

Find the sum of all possible digits that comes at ten′s place for 3^n where n is any natural number.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{digits}\:\mathrm{that} \\ $$$$\mathrm{comes}\:\mathrm{at}\:\mathrm{ten}'\mathrm{s}\:\mathrm{place}\:\mathrm{for}\:\mathrm{3}^{{n}} \:\mathrm{where}\:{n}\:\mathrm{is} \\ $$$$\mathrm{any}\:\mathrm{natural}\:\mathrm{number}. \\ $$

Question Number 19638    Answers: 1   Comments: 0

Let P(x) is a polynomial such that P(1) = 1, P(2) = 2, P(3) = 3, and P(4) = 5. Find the value of P(6).

$$\mathrm{Let}\:{P}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{such}\:\mathrm{that} \\ $$$${P}\left(\mathrm{1}\right)\:=\:\mathrm{1},\:{P}\left(\mathrm{2}\right)\:=\:\mathrm{2},\:{P}\left(\mathrm{3}\right)\:=\:\mathrm{3},\:\mathrm{and} \\ $$$${P}\left(\mathrm{4}\right)\:=\:\mathrm{5}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}\left(\mathrm{6}\right). \\ $$

Question Number 19643    Answers: 1   Comments: 0

Find the real solution of the equation (√(17 + 8x − 2x^2 )) + (√(4 + 12x − 3x^2 )) = x^2 − 4x + 13.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\sqrt{\mathrm{17}\:+\:\mathrm{8}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{4}\:+\:\mathrm{12}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} }\:=\:{x}^{\mathrm{2}} \\ $$$$−\:\mathrm{4}{x}\:+\:\mathrm{13}. \\ $$

Question Number 19629    Answers: 1   Comments: 0

If ∣z∣ = 2, then the points representing the complex numbers −1 + 5z will lie on a (1) Circle (2) Straight line (3) Parabola (4) Ellipse

$$\mathrm{If}\:\mid{z}\mid\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{the}\:\mathrm{points}\:\mathrm{representing} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:−\mathrm{1}\:+\:\mathrm{5}{z}\:\mathrm{will}\:\mathrm{lie} \\ $$$$\mathrm{on}\:\mathrm{a} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Circle} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Straight}\:\mathrm{line} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Parabola} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Ellipse} \\ $$

Question Number 19623    Answers: 1   Comments: 0

Find the locus of z if arg(((z − 2)/(z − 3))) = (π/4)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{if}\:\mathrm{arg}\left(\frac{{z}\:−\:\mathrm{2}}{{z}\:−\:\mathrm{3}}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 19609    Answers: 1   Comments: 0

Question Number 19604    Answers: 1   Comments: 1

Question Number 19592    Answers: 0   Comments: 2

Question Number 19574    Answers: 0   Comments: 5

Carol was given three numbers and was asked to add the largest of the three to the product of the other two. Instead, she multiplied the largest with the sum of the other two, but still got the right answer. What is the sum of the three numbers?

$$\mathrm{Carol}\:\mathrm{was}\:\mathrm{given}\:\mathrm{three}\:\mathrm{numbers}\:\mathrm{and} \\ $$$$\mathrm{was}\:\mathrm{asked}\:\mathrm{to}\:\mathrm{add}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{to}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two}. \\ $$$$\mathrm{Instead},\:\mathrm{she}\:\mathrm{multiplied}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two},\:\mathrm{but}\:\mathrm{still}\:\mathrm{got} \\ $$$$\mathrm{the}\:\mathrm{right}\:\mathrm{answer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{three}\:\mathrm{numbers}? \\ $$

Question Number 19508    Answers: 0   Comments: 0

Prove that the length of perpendicular drawn from the point z_0 to the straight line α^ z + αz^ + c = 0 is p = ∣((α^ z_0 + αz_0 ^ + c)/(2 ∣α∣))∣.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{perpendicular} \\ $$$$\mathrm{drawn}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point}\:{z}_{\mathrm{0}} \:\mathrm{to}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{is} \\ $$$${p}\:=\:\mid\frac{\bar {\alpha}{z}_{\mathrm{0}} \:+\:\alpha\bar {{z}}_{\mathrm{0}} \:+\:{c}}{\mathrm{2}\:\mid\alpha\mid}\mid. \\ $$

Question Number 19507    Answers: 1   Comments: 0

Prove that three points z_1 , z_2 , z_3 are collinear if determinant ((z_1 ,z_1 ^ ,1),(z_2 ,z_2 ^ ,1),(z_3 ,z_3 ^ ,1))= 0

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{three}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{collinear}\:\mathrm{if}\:\begin{vmatrix}{{z}_{\mathrm{1}} }&{\bar {{z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{z}_{\mathrm{2}} }&{\bar {{z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{z}_{\mathrm{3}} }&{\bar {{z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix}=\:\mathrm{0} \\ $$

Question Number 19506    Answers: 1   Comments: 0

Prove that the equation of the line joining the points z_1 and z_2 can be put in the form z = tz_1 + (1 − t)z_2 , where t is a parameter.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{put} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{z}\:=\:{tz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:−\:{t}\right){z}_{\mathrm{2}} ,\:\mathrm{where} \\ $$$${t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parameter}. \\ $$

Question Number 19505    Answers: 1   Comments: 0

Prove that two straight lines with complex slopes μ_1 and μ_2 are parallel and perpendicular according as μ_1 = μ_2 and μ_1 + μ_2 = 0. Hence if the straight lines α^ z + αz^ + c = 0 and β^ z + βz^ + k = 0 are parallel and perpendicular according as α^ β − αβ^ = 0 and α^ β + αβ^ = 0.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{with} \\ $$$$\mathrm{complex}\:\mathrm{slopes}\:\mu_{\mathrm{1}} \:\mathrm{and}\:\mu_{\mathrm{2}} \:\mathrm{are}\:\mathrm{parallel} \\ $$$$\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according}\:\mathrm{as}\:\mu_{\mathrm{1}} \:=\:\mu_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mu_{\mathrm{1}} \:+\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{if}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{lines}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\beta}{z}\:+\:\beta\bar {{z}}\:+\:{k}\:=\:\mathrm{0} \\ $$$$\mathrm{are}\:\mathrm{parallel}\:\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according} \\ $$$$\mathrm{as}\:\bar {\alpha}\beta\:−\:\alpha\bar {\beta}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\alpha}\beta\:+\:\alpha\bar {\beta}\:=\:\mathrm{0}. \\ $$

Question Number 19557    Answers: 1   Comments: 3

Question Number 19556    Answers: 0   Comments: 0

  Pg 352      Pg 353      Pg 354      Pg 355      Pg 356      Pg 357      Pg 358      Pg 359      Pg 360      Pg 361   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com