Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 356
Question Number 9324 Answers: 1 Comments: 0
$${if}\:\:{x}=\frac{{a}\left(\mathrm{1}−{r}^{{n}} \right)}{\mathrm{1}−{r}}\:{make}\:{r}\:{the}\: \\ $$$${subject}\:{of}\:{the}\:{formula} \\ $$
Question Number 9323 Answers: 0 Comments: 1
Question Number 9312 Answers: 0 Comments: 6
$$\mathrm{Solve}\:\mathrm{simultaneously} \\ $$$$\mathrm{xy}\:+\:\mathrm{x}\:+\:\mathrm{y}\:=\:\mathrm{23}\:\:\:\:.......\:\left(\mathrm{i}\right) \\ $$$$\mathrm{xz}\:+\:\mathrm{x}\:+\:\mathrm{z}\:=\:\mathrm{41}\:\:\:\:........\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{yz}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{27}\:\:\:\:\:........\:\left(\mathrm{iii}\right) \\ $$
Question Number 9279 Answers: 3 Comments: 0
$$\mathrm{evalute}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\overset{\mathrm{5}} {\sum}_{\mathrm{m}=\mathrm{2}\:} \mathrm{m}^{\mathrm{4}} \\ $$
Question Number 9278 Answers: 0 Comments: 1
$$\mathrm{represent}\:\mathrm{in}\:\mathrm{sigma}\:\mathrm{notation}\: \\ $$$$−\mathrm{1}+\mathrm{4}−\mathrm{9}+\mathrm{16}.................. \\ $$
Question Number 9236 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\:\mathrm{simultaneously} \\ $$$$\frac{\mathrm{x}}{\mathrm{y}\:+\:\mathrm{1}_{\:} }\:+\:\frac{\mathrm{y}}{\mathrm{x}\:+\:\mathrm{1}}\:=\:\frac{\mathrm{5}}{\mathrm{3}}\:\:\:\:.............\:\left(\mathrm{i}\right) \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{2}\:\:\:\:\:\:\:\:...........\:\left(\mathrm{ii}\right) \\ $$
Question Number 9229 Answers: 0 Comments: 0
$$\mathrm{2}^{\mathrm{3x}\:+\:\mathrm{1}} \:−\:\mathrm{3}.\mathrm{2}^{\mathrm{2x}} \:+\:\mathrm{2}^{\mathrm{x}\:+\:\mathrm{1}} \:=\:\mathrm{2x} \\ $$$$\mathrm{Find}\:\mathrm{x} \\ $$
Question Number 9219 Answers: 0 Comments: 1
$$\mathrm{Show}\:\mathrm{that}:\: \\ $$$$\left(\mathrm{a}\:+\:\mathrm{b}\right)\left[\frac{\mathrm{1}}{\mathrm{a}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{b}^{\mathrm{2}} }\right]\left[\frac{\mathrm{a}^{\mathrm{4}} }{\mathrm{b}^{\mathrm{2}} }\:+\:\frac{\mathrm{b}^{\mathrm{4}} }{\mathrm{a}^{\mathrm{2}} }\right]\:\geqslant\:\mathrm{8}\sqrt{\mathrm{ab}} \\ $$
Question Number 9199 Answers: 0 Comments: 2
$$\mathrm{If}\:\:\mathrm{r}^{\mathrm{2}} \:=\:\left(\mathrm{x}\:+\:\mathrm{ea}\right)^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \:\mathrm{and}\:\mathrm{s}^{\mathrm{2}} \:=\:\left(\mathrm{x}\:−\:\mathrm{ea}\right)^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \\ $$$$\mathrm{and}\:\mathrm{r}\:+\:\mathrm{s}\:=\:\mathrm{2a},\:\mathrm{Prove}\:\mathrm{that}: \\ $$$$\mathrm{r}\:=\:\mathrm{a}\:+\:\mathrm{ex},\:\:\mathrm{s}\:=\:\mathrm{a}\:−\:\mathrm{ex},\:\mathrm{and}\:\mathrm{that}, \\ $$$$\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}\:−\:\mathrm{e}^{\mathrm{2}} \right)\:+\:\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{a}^{\mathrm{2}} \left(\mathrm{1}\:−\:\mathrm{e}^{\mathrm{2}} \right) \\ $$
Question Number 9141 Answers: 0 Comments: 5
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{if} \\ $$$$\left(\sqrt{\mathrm{2}\:+\:\sqrt{\mathrm{3}}}\right)^{\mathrm{x}} \:+\:\left(\sqrt{\mathrm{2}\:−\:\sqrt{\mathrm{3}}}\right)^{\mathrm{x}} \:=\:\mathrm{4} \\ $$
Question Number 9128 Answers: 2 Comments: 1
Question Number 9123 Answers: 0 Comments: 1
$$\mathrm{simplify} \\ $$$$\left(\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{−\mathrm{1}/\mathrm{2}} −\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} \right)/\mathrm{x}^{\mathrm{2}} \\ $$
Question Number 9119 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mathrm{x}\:=\:\mathrm{5}^{\mathrm{1}/\mathrm{4}} \:+\:\mathrm{5}^{−\mathrm{1}/\mathrm{4}} \:\:\:\mathrm{and}\:\:\mathrm{y}\:=\:\mathrm{5}^{\mathrm{1}/\mathrm{4}} \:−\:\mathrm{5}^{−\mathrm{1}/\mathrm{4}} \\ $$$$\mathrm{Show}\:\mathrm{that}\::\:\mathrm{5}^{\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} \:} =\:\mathrm{144} \\ $$
Question Number 9096 Answers: 1 Comments: 0
Question Number 9061 Answers: 2 Comments: 1
Question Number 9029 Answers: 2 Comments: 0
$$ \\ $$$$\mathrm{2}{cos}\left({x}+\Pi/\mathrm{4}\right)={cos}\left({x}−\Pi/\mathrm{4}\right) \\ $$
Question Number 9020 Answers: 2 Comments: 1
Question Number 9015 Answers: 0 Comments: 0
Question Number 9009 Answers: 1 Comments: 0
$$\mathrm{If}\::\:\:\mathrm{x}\:=\:\frac{\mathrm{3y}\:+\:\mathrm{6z}}{\mathrm{7z}\:−\:\mathrm{2}}\:\:\mathrm{and}\:\:\mathrm{y}\:=\:\frac{\frac{\mathrm{1}}{\mathrm{2}}\mathrm{z}\:+\:\mathrm{6y}}{\frac{\mathrm{3}}{\mathrm{2}}\mathrm{z}\:+\:\mathrm{6y}} \\ $$$$\mathrm{Find}\::\:\:\mathrm{x}^{\mathrm{3}} \:+\:\mathrm{y}^{\mathrm{3}} \\ $$
Question Number 9004 Answers: 1 Comments: 0
$$\mathrm{prove} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\centerdot\frac{\mathrm{3}}{\mathrm{4}}\centerdot\frac{\mathrm{5}}{\mathrm{6}}\centerdot\centerdot\centerdot\centerdot\centerdot\frac{\mathrm{2n}−\mathrm{1}}{\mathrm{2n}}\leqslant\frac{\mathrm{1}}{\sqrt{\mathrm{3n}+\mathrm{1}}} \\ $$
Question Number 8998 Answers: 1 Comments: 0
$$\mathrm{If}\:\:\mathrm{2}^{\mathrm{x}} \:=\:\mathrm{3}^{\mathrm{y}} \:=\:\mathrm{6}^{−\mathrm{z}} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\::\:\:\frac{\mathrm{1}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\:+\:\frac{\mathrm{1}}{\mathrm{z}} \\ $$
Question Number 8985 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$$$\mathrm{log}_{\mathrm{x}} \mathrm{3}=\mathrm{81} \\ $$
Question Number 8965 Answers: 0 Comments: 1
$${If} \\ $$$${xy}\:−\:{x}\:=\:{yz}\:−\:\mathrm{2}{y}\:=\:{xz}\:+\:\mathrm{3}{z}\:=\:\mathrm{3} \\ $$$${and} \\ $$$${xyz}\:>\:\mathrm{0} \\ $$$${What}\:{is}\:{the}\:{value}\:{of}\:{xyz}\:? \\ $$
Question Number 8956 Answers: 0 Comments: 1
$$\mathrm{prove}\:\mathrm{that}; \\ $$$$\mathrm{log}_{\mathrm{ab}} \mathrm{x}=\frac{\mathrm{log}_{\mathrm{a}} \mathrm{x}−\mathrm{log}_{\mathrm{b}} \mathrm{x}}{\mathrm{log}_{\mathrm{a}} \mathrm{x}+\mathrm{log}_{\mathrm{b}} \mathrm{x}} \\ $$
Question Number 8934 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\mathrm{x}. \\ $$$$\mathrm{3}^{\mathrm{x}+\mathrm{1}} =\mathrm{2}^{\mathrm{x}+\mathrm{2}} \\ $$
Question Number 8905 Answers: 1 Comments: 0
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$$$\mathrm{3}^{\mathrm{x}} \:=\mathrm{9x} \\ $$
Pg 351 Pg 352 Pg 353 Pg 354 Pg 355 Pg 356 Pg 357 Pg 358 Pg 359 Pg 360
Terms of Service
Privacy Policy
Contact: info@tinkutara.com