Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 356
Question Number 11753 Answers: 2 Comments: 0
$${a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{from}\:\mathrm{equation}\:{x}^{\mathrm{3}} \:−\:\mathrm{5}{x}^{\mathrm{2}} \:−\:\mathrm{9}{x}\:+\:\mathrm{10}\:=\:\mathrm{0} \\ $$$$\mathrm{If}\:{P}\left({x}\right)\:=\:{Ax}^{\mathrm{3}} \:+\:{Bx}^{\mathrm{2}} \:+\:{Cx}\:−\:\mathrm{2015}\:\mathrm{and} \\ $$$${P}\left({a}\right)\:=\:{b}\:+\:{c}\: \\ $$$${P}\left({b}\right)\:=\:{a}\:+\:{c} \\ $$$${P}\left({c}\right)\:=\:{a}\:+\:{b} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{A}\:+\:{B}\:+\:{C}\:? \\ $$
Question Number 11748 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{simultaneously} \\ $$$$\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{4y}^{\mathrm{2}} \:+\:\mathrm{xy}\:=\:\mathrm{6}\:\:\:\:\:..............\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\mathrm{3x}^{\mathrm{2}} \:+\:\mathrm{8y}^{\mathrm{2}} \:=\:\mathrm{14}\:\:\:\:\:\:\:\:\:\:\:..............\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$
Question Number 11741 Answers: 1 Comments: 0
$$\int\mathrm{xtan}^{\mathrm{2}} \:\mathrm{x}\:\mathrm{dx}=? \\ $$
Question Number 11714 Answers: 0 Comments: 3
$${Solve}\:{the}\:{Crazy}\:{equation}... \\ $$$${x}\left({lnx}\right)^{\mathrm{2}} +{xlnx}−\mathrm{1}=\mathrm{0} \\ $$
Question Number 11707 Answers: 0 Comments: 0
$$ \\ $$$$ \\ $$$${ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$${pls}.\:{solve}\:{it}\:{in}\:{a}\:{alzebric}\:{way}\:, \\ $$$${that}\:{a}\:{O}\:{level}\left({ssc}\right)\:{student}\:{can} \\ $$$${understand}... \\ $$$$ \\ $$
Question Number 11672 Answers: 2 Comments: 3
$$\mathrm{8}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{6}\boldsymbol{\mathrm{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{Solves}}... \\ $$
Question Number 11661 Answers: 1 Comments: 0
$$\mathrm{8}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{6}\boldsymbol{\mathrm{x}}+\mathrm{1}=\mathrm{0}. \\ $$$$\boldsymbol{\mathrm{Solves}}...\:\:\boldsymbol{\mathrm{equation}} \\ $$$$\boldsymbol{\mathrm{x}}_{\mathrm{1}} =?\:\:\:\:\:\boldsymbol{\mathrm{x}}_{\mathrm{2}} =? \\ $$
Question Number 11648 Answers: 1 Comments: 0
$$\mid\mathrm{x}\mid<\mathrm{l} \\ $$$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{x}^{\mathrm{n}} =? \\ $$
Question Number 11628 Answers: 1 Comments: 0
$$\mathrm{p}\left(\mathrm{x}−\mathrm{1}\right)+\mathrm{p}\left(\mathrm{x}+\mathrm{1}\right)=\mathrm{4x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{10} \\ $$$$\mathrm{p}\left(\mathrm{x}\right)=? \\ $$
Question Number 11543 Answers: 2 Comments: 0
$${solve}\:{for}\:{x}\:{and}\:{y}\:{in}\:{this}\:{equation} \\ $$$${x}^{{x}} +{y}^{{y}} =\mathrm{31} \\ $$$${x}+{y}=\mathrm{5} \\ $$
Question Number 11515 Answers: 2 Comments: 0
$$\sqrt[{\mathrm{5}}]{\frac{\mathrm{4}+\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}}}−\sqrt[{\mathrm{5}}]{\frac{\mathrm{4}−\mathrm{6}\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{x}}}}=\mathrm{1}. \\ $$$$\boldsymbol{\mathrm{x}}_{\mathrm{1}} +\boldsymbol{\mathrm{x}}_{\mathrm{2}} =? \\ $$
Question Number 11501 Answers: 3 Comments: 1
$$\left(\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{7}\boldsymbol{\mathrm{x}}−\mathrm{5}\right)\left(\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{13}\boldsymbol{\mathrm{x}}+\mathrm{3}\right)\left(\mathrm{3}\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{8}\right)=\mathrm{0}. \\ $$$$\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{all}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{multiples}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}} \\ $$$$\boldsymbol{\mathrm{real}}\:\:\boldsymbol{\mathrm{roots}}\:\:\boldsymbol{\mathrm{of}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{equation}}. \\ $$
Question Number 11500 Answers: 2 Comments: 0
$$\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}−\mathrm{4}\right)\left(\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}+\mathrm{4}\right)=\mathrm{9} \\ $$$$\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{equation}}\:\:\boldsymbol{\mathrm{has}}\:\:\boldsymbol{\mathrm{multiple}}\:\:\boldsymbol{\mathrm{roots}}. \\ $$
Question Number 11477 Answers: 2 Comments: 0
$$\frac{\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\mathrm{1}}{\boldsymbol{\mathrm{a}}^{\mathrm{6}} +\mathrm{1}}. \\ $$$$\boldsymbol{\mathrm{solves}}.... \\ $$
Question Number 11476 Answers: 1 Comments: 0
Question Number 11423 Answers: 0 Comments: 0
$$\mathrm{please}\:\mathrm{solve}.\: \\ $$$$\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{bx}^{\mathrm{3}} \:+\:\mathrm{cx}^{\mathrm{2}} \:+\:\mathrm{dx}\:+\:\mathrm{e}\:=\:\mathrm{0} \\ $$
Question Number 11398 Answers: 0 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:: \\ $$$$\mathrm{625}^{\mathrm{x}\:−\:\mathrm{5}} \:=\:\mathrm{200}\sqrt{\mathrm{x}^{\mathrm{3}} } \\ $$
Question Number 11363 Answers: 0 Comments: 0
$$\mathrm{x}\in\mathrm{Z} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{log}_{\mathrm{3}} \left(\frac{\mathrm{x}−\mathrm{5}}{\mathrm{x}−\mathrm{2}}\right)\Rightarrow\Sigma\mathrm{x}=? \\ $$
Question Number 11356 Answers: 1 Comments: 0
Question Number 11355 Answers: 1 Comments: 0
$$\mathrm{z}+\mathrm{3}−\mathrm{2i}=\left(\mathrm{1}+\mathrm{i}\right)×\overset{−} {\mathrm{z}}\:\Rightarrow\mid\mathrm{z}\mid=? \\ $$
Question Number 11334 Answers: 1 Comments: 0
$$\mathrm{z}+\mid\mathrm{z}\mid=\mathrm{9}−\mathrm{3i}\Rightarrow\mathrm{Re}\left(\mathrm{z}\right) \\ $$
Question Number 11302 Answers: 2 Comments: 0
$$\frac{\mathrm{sin10x}−\mathrm{sin6x}−\mathrm{sin2x}}{\mathrm{sin9x}−\mathrm{sin7x}−\mathrm{sinx}}=? \\ $$
Question Number 11285 Answers: 1 Comments: 0
$$\frac{{sin}\mathrm{20}}{{cos}\mathrm{80}−{tan}\mathrm{30}×{sin}\mathrm{80}}=? \\ $$
Question Number 11274 Answers: 2 Comments: 0
$$\frac{{sin}\mathrm{20}+\sqrt{\mathrm{3}}×{cos}\mathrm{20}}{{cos}\mathrm{10}}=? \\ $$
Question Number 11268 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{x},\:\mathrm{y}\:\mathrm{and}\:\mathrm{z}\:\mathrm{in}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{p},\:\mathrm{q}\:\mathrm{and}\:\mathrm{r} \\ $$$$\mathrm{yz}\:=\:\mathrm{py}\:+\:\mathrm{qz}\:\:\:\:\:........\:\left(\mathrm{i}\right) \\ $$$$\mathrm{zx}\:=\:\mathrm{qz}\:+\:\mathrm{rx}\:\:\:\:\:\:.......\:\left(\mathrm{ii}\right) \\ $$$$\mathrm{xy}\:=\:\mathrm{rx}\:+\:\mathrm{py}\:\:\:\:\:.......\:\left(\mathrm{iii}\right) \\ $$
Question Number 11263 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{in}\:\mathrm{the}\:\mathrm{equation}\:. \\ $$$$\mathrm{625}^{\mathrm{x}\:−\:\mathrm{5}} \:=\:\mathrm{200}\sqrt{\mathrm{x}^{\mathrm{3}} } \\ $$
Pg 351 Pg 352 Pg 353 Pg 354 Pg 355 Pg 356 Pg 357 Pg 358 Pg 359 Pg 360
Terms of Service
Privacy Policy
Contact: info@tinkutara.com