Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 355

Question Number 22503    Answers: 1   Comments: 4

If (a + bx)^(−2) = (1/4) − 3x + ..., then (a, b) =

$$\mathrm{If}\:\left({a}\:+\:{bx}\right)^{−\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{4}}\:−\:\mathrm{3}{x}\:+\:...,\:\mathrm{then}\:\left({a},\:{b}\right)\:= \\ $$

Question Number 22491    Answers: 1   Comments: 0

The coefficient of x^r in the expansion of (1 − 2x)^(−1/2) is (1) (((2r)!)/((r!)^2 )) (2) (((2r)!)/(2^r (r!)^2 )) (3) (((2r)!)/((r!)^2 2^(2r) )) (4) (((2r)!)/(2^r (r + 1)!(r − 1)!))

$$\mathrm{The}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{r}} \:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left(\mathrm{1}\:−\:\mathrm{2}{x}\right)^{−\mathrm{1}/\mathrm{2}} \:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\frac{\left(\mathrm{2}{r}\right)!}{\left({r}!\right)^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}\right)\:\frac{\left(\mathrm{2}{r}\right)!}{\mathrm{2}^{{r}} \:\left({r}!\right)^{\mathrm{2}} } \\ $$$$\left(\mathrm{3}\right)\:\frac{\left(\mathrm{2}{r}\right)!}{\left({r}!\right)^{\mathrm{2}} \:\mathrm{2}^{\mathrm{2}{r}} } \\ $$$$\left(\mathrm{4}\right)\:\frac{\left(\mathrm{2}{r}\right)!}{\mathrm{2}^{{r}} \:\left({r}\:+\:\mathrm{1}\right)!\left({r}\:−\:\mathrm{1}\right)!} \\ $$

Question Number 22474    Answers: 0   Comments: 0

Let R = (5(√5) + 11)^(2n+1) and f = R − [R], then prove that Rf = 4^(2n+1) .

$$\mathrm{Let}\:{R}\:=\:\left(\mathrm{5}\sqrt{\mathrm{5}}\:+\:\mathrm{11}\right)^{\mathrm{2}{n}+\mathrm{1}} \:\mathrm{and}\:{f}\:=\:{R}\:−\:\left[{R}\right], \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:{Rf}\:=\:\mathrm{4}^{\mathrm{2}{n}+\mathrm{1}} . \\ $$

Question Number 22472    Answers: 0   Comments: 0

If x^x ∙y^y ∙z^z = x^y ∙y^z ∙z^x = x^z ∙y^x ∙z^y such that x, y and z are positive integers greater than 1, then which of the following cannot be true for any of the possible value of x, y and z? (1) xyz = 27 (2) xyz = 1728 (3) x + y + z = 32 (4) x + y + z = 12

$$\mathrm{If}\:{x}^{{x}} \centerdot{y}^{{y}} \centerdot{z}^{{z}} \:=\:{x}^{{y}} \centerdot{y}^{{z}} \centerdot{z}^{{x}} \:=\:{x}^{{z}} \centerdot{y}^{{x}} \centerdot{z}^{{y}} \:\mathrm{such} \\ $$$$\mathrm{that}\:{x},\:{y}\:\mathrm{and}\:{z}\:\mathrm{are}\:\mathrm{positive}\:\mathrm{integers} \\ $$$$\mathrm{greater}\:\mathrm{than}\:\mathrm{1},\:\mathrm{then}\:\mathrm{which}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{following}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{true}\:\mathrm{for}\:\mathrm{any}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{possible}\:\mathrm{value}\:\mathrm{of}\:{x},\:{y}\:\mathrm{and}\:{z}? \\ $$$$\left(\mathrm{1}\right)\:{xyz}\:=\:\mathrm{27} \\ $$$$\left(\mathrm{2}\right)\:{xyz}\:=\:\mathrm{1728} \\ $$$$\left(\mathrm{3}\right)\:{x}\:+\:{y}\:+\:{z}\:=\:\mathrm{32} \\ $$$$\left(\mathrm{4}\right)\:{x}\:+\:{y}\:+\:{z}\:=\:\mathrm{12} \\ $$

Question Number 22468    Answers: 0   Comments: 0

If a_r is the coefficient of x^r in the expansion (1 + x + x^2 )^n , then a_1 − 2a_2 + 3a_3 − ....... 2na_(2n) =

$$\mathrm{If}\:{a}_{{r}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{r}} \:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\left(\mathrm{1}\:+\:{x}\:+\:{x}^{\mathrm{2}} \right)^{{n}} ,\:\mathrm{then} \\ $$$${a}_{\mathrm{1}} \:−\:\mathrm{2}{a}_{\mathrm{2}} \:+\:\mathrm{3}{a}_{\mathrm{3}} \:−\:.......\:\mathrm{2}{na}_{\mathrm{2}{n}} \:= \\ $$

Question Number 22463    Answers: 1   Comments: 0

Solve for real x: (1/([x])) + (1/([2x])) = (x) + (1/3), where [x] is the greatest integer less than or equal to x and (x) = x − [x], [e.g. [3.4] = 3 and (3.4) = 0.4].

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{real}\:{x}: \\ $$$$\frac{\mathrm{1}}{\left[{x}\right]}\:+\:\frac{\mathrm{1}}{\left[\mathrm{2}{x}\right]}\:=\:\left({x}\right)\:+\:\frac{\mathrm{1}}{\mathrm{3}}, \\ $$$$\mathrm{where}\:\left[{x}\right]\:\mathrm{is}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{integer}\:\mathrm{less} \\ $$$$\mathrm{than}\:\mathrm{or}\:\mathrm{equal}\:\mathrm{to}\:{x}\:\mathrm{and}\:\left({x}\right)\:=\:{x}\:−\:\left[{x}\right], \\ $$$$\left[\mathrm{e}.\mathrm{g}.\:\left[\mathrm{3}.\mathrm{4}\right]\:=\:\mathrm{3}\:\mathrm{and}\:\left(\mathrm{3}.\mathrm{4}\right)\:=\:\mathrm{0}.\mathrm{4}\right]. \\ $$

Question Number 29184    Answers: 1   Comments: 0

{ (((√(x^2 −4xy))+(√(y^2 +2xy+9))=10)),((x−y=7)) :} How many real roots of the equtions system?

$$\begin{cases}{\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{xy}}}+\sqrt{\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{\mathrm{xy}}+\mathrm{9}}=\mathrm{10}}\\{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{y}}=\mathrm{7}}\end{cases} \\ $$$$\boldsymbol{\mathrm{How}}\:\boldsymbol{\mathrm{many}}\:\:\boldsymbol{\mathrm{real}}\:\boldsymbol{\mathrm{roots}}\:\boldsymbol{\mathrm{of}}\: \\ $$$$\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{equtions}}\:\boldsymbol{\mathrm{system}}? \\ $$

Question Number 22423    Answers: 0   Comments: 0

Prove that no three consecutive binomial coefficient can be in G.P. or H.P.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{no}\:\mathrm{three}\:\mathrm{consecutive} \\ $$$$\mathrm{binomial}\:\mathrm{coefficient}\:\mathrm{can}\:\mathrm{be}\:\mathrm{in}\:\mathrm{G}.\mathrm{P}.\:\mathrm{or}\:\mathrm{H}.\mathrm{P}. \\ $$

Question Number 22394    Answers: 0   Comments: 0

Prove that : ((^n C_0 )/n)−((^n C_1 )/(n+1))+((^n C_2 )/(n+2))−...+(−1)^n .((^n C_n )/(2n))=(1/(n.^(2n) C_n ))

$$\mathrm{Prove}\:\mathrm{that}\::\:\frac{\:^{{n}} {C}_{\mathrm{0}} }{{n}}−\frac{\:^{{n}} {C}_{\mathrm{1}} }{{n}+\mathrm{1}}+\frac{\:^{{n}} {C}_{\mathrm{2}} }{{n}+\mathrm{2}}−...+\left(−\mathrm{1}\right)^{{n}} .\frac{\:^{{n}} {C}_{{n}} }{\mathrm{2}{n}}=\frac{\mathrm{1}}{{n}.^{\mathrm{2}{n}} {C}_{{n}} } \\ $$

Question Number 22392    Answers: 0   Comments: 0

Show that the sum of odd coefficients in the expansion of (1 + 2x − 3x^2 )^(1025) is an even integer.

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{odd}\:\mathrm{coefficients} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}\:+\:\mathrm{2}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} \right)^{\mathrm{1025}} \\ $$$$\mathrm{is}\:\mathrm{an}\:\mathrm{even}\:\mathrm{integer}. \\ $$

Question Number 22389    Answers: 0   Comments: 0

Simplify: ^(n−1) C_2 +2^(n−2) C_2 +3^(n−3) C_2 +...+(n−2)^2 C_2

$${Simplify}: \\ $$$$\:^{{n}−\mathrm{1}} {C}_{\mathrm{2}} +\mathrm{2}\:^{{n}−\mathrm{2}} {C}_{\mathrm{2}} +\mathrm{3}\:^{{n}−\mathrm{3}} {C}_{\mathrm{2}} +...+\left({n}−\mathrm{2}\right)\:^{\mathrm{2}} {C}_{\mathrm{2}} \\ $$

Question Number 22379    Answers: 1   Comments: 0

For each positive integer n, define a_n = 20 + n^2 , and d_n = gcd(a_n , a_(n+1) ). Find the set of all values that are taken by d_n and show by examples that each of these values are attained.

$$\mathrm{For}\:\mathrm{each}\:\mathrm{positive}\:\mathrm{integer}\:{n},\:\mathrm{define}\:{a}_{{n}} \:= \\ $$$$\mathrm{20}\:+\:{n}^{\mathrm{2}} ,\:\mathrm{and}\:{d}_{{n}} \:=\:{gcd}\left({a}_{{n}} ,\:{a}_{{n}+\mathrm{1}} \right).\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\:\mathrm{values}\:\mathrm{that}\:\mathrm{are}\:\mathrm{taken}\:\mathrm{by} \\ $$$${d}_{{n}} \:\mathrm{and}\:\mathrm{show}\:\mathrm{by}\:\mathrm{examples}\:\mathrm{that}\:\mathrm{each}\:\mathrm{of} \\ $$$$\mathrm{these}\:\mathrm{values}\:\mathrm{are}\:\mathrm{attained}. \\ $$

Question Number 22316    Answers: 0   Comments: 0

Prove that the coefficient of x^p in the expansion of (a_0 +a_1 x+a_2 x^2 +a_3 x^3 +...+a_k x^k )^n is Σ((n!)/(n_0 !n_1 !n_2 !n_3 !...n_k !))a_0 ^n_0 a_1 ^n_1 a_2 ^n_2 a_3 ^n_3 ...a_k ^n_k where n_0 , n_1 , n_2 , n_3 , ..., n_k are all non- negative integers subject to the conditions n_0 +n_1 +n_2 +n_3 +...+n_k =n and n_1 +2n_2 +3n_3 +...+kn_k =p.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{p}} \:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left({a}_{\mathrm{0}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{3}} {x}^{\mathrm{3}} +...+{a}_{{k}} {x}^{{k}} \right)^{{n}} \\ $$$$\mathrm{is}\:\Sigma\frac{{n}!}{{n}_{\mathrm{0}} !{n}_{\mathrm{1}} !{n}_{\mathrm{2}} !{n}_{\mathrm{3}} !...{n}_{{k}} !}{a}_{\mathrm{0}} ^{{n}_{\mathrm{0}} } {a}_{\mathrm{1}} ^{{n}_{\mathrm{1}} } {a}_{\mathrm{2}} ^{{n}_{\mathrm{2}} } {a}_{\mathrm{3}} ^{{n}_{\mathrm{3}} } ...{a}_{{k}} ^{{n}_{{k}} } \\ $$$$\mathrm{where}\:{n}_{\mathrm{0}} ,\:{n}_{\mathrm{1}} ,\:{n}_{\mathrm{2}} ,\:{n}_{\mathrm{3}} ,\:...,\:{n}_{{k}} \:\mathrm{are}\:\mathrm{all}\:\mathrm{non}- \\ $$$$\mathrm{negative}\:\mathrm{integers}\:\mathrm{subject}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{conditions}\:{n}_{\mathrm{0}} +{n}_{\mathrm{1}} +{n}_{\mathrm{2}} +{n}_{\mathrm{3}} +...+{n}_{{k}} ={n} \\ $$$$\mathrm{and}\:{n}_{\mathrm{1}} +\mathrm{2}{n}_{\mathrm{2}} +\mathrm{3}{n}_{\mathrm{3}} +...+{kn}_{{k}} ={p}. \\ $$

Question Number 22726    Answers: 1   Comments: 2

Question Number 22244    Answers: 1   Comments: 0

Solve the inequality : −9((x)^(1/4) )+(√x)+18 ≥ 0 .

$${Solve}\:{the}\:{inequality}\:: \\ $$$$\:−\mathrm{9}\left(\sqrt[{\mathrm{4}}]{{x}}\right)+\sqrt{{x}}+\mathrm{18}\:\geqslant\:\mathrm{0}\:. \\ $$

Question Number 22731    Answers: 0   Comments: 0

Question Number 22220    Answers: 1   Comments: 0

The number of integral solutions of the equation 4log_(x/2) ((√x))+2log_(4x) (x^2 )= 3log_(2x) (x^3 ) is

$$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{integral}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation}\:\mathrm{4log}_{{x}/\mathrm{2}} \left(\sqrt{{x}}\right)+\mathrm{2log}_{\mathrm{4}{x}} \left({x}^{\mathrm{2}} \right)= \\ $$$$\mathrm{3log}_{\mathrm{2}{x}} \left({x}^{\mathrm{3}} \right)\:\mathrm{is} \\ $$

Question Number 22199    Answers: 2   Comments: 3

Question Number 22177    Answers: 1   Comments: 0

(C_0 /2) − (C_1 /3) + (C_2 /4) − (C_3 /5) + ..........

$$\frac{{C}_{\mathrm{0}} }{\mathrm{2}}\:−\:\frac{{C}_{\mathrm{1}} }{\mathrm{3}}\:+\:\frac{{C}_{\mathrm{2}} }{\mathrm{4}}\:−\:\frac{{C}_{\mathrm{3}} }{\mathrm{5}}\:+\:.......... \\ $$

Question Number 22154    Answers: 2   Comments: 0

Given a,b,c real and positive numbers, and a + b + c = 1 Find the minimum value of ((a + b)/(abc))

$$\mathrm{Given}\:{a},{b},{c}\:\mathrm{real}\:\mathrm{and}\:\mathrm{positive}\:\mathrm{numbers},\:\mathrm{and} \\ $$$${a}\:+\:{b}\:+\:{c}\:=\:\mathrm{1} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\:\frac{{a}\:+\:{b}}{{abc}} \\ $$

Question Number 22133    Answers: 1   Comments: 1

If f : R^+ → R^+ is a polynomial function which satisfy the equation f(f(x)) + f(x) = 12x ∀ x ∈ R^+ , then find f(x).

$$\mathrm{If}\:{f}\::\:{R}^{+} \:\rightarrow\:{R}^{+} \:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{function} \\ $$$$\mathrm{which}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\:{f}\left({f}\left({x}\right)\right)\:+ \\ $$$${f}\left({x}\right)\:=\:\mathrm{12}{x}\:\forall\:{x}\:\in\:{R}^{+} ,\:\mathrm{then}\:\mathrm{find}\:{f}\left({x}\right). \\ $$

Question Number 22103    Answers: 1   Comments: 2

cos(^ 15)

$$\mathrm{cos}\overset{} {\left(}\:\mathrm{15}\right) \\ $$

Question Number 22102    Answers: 1   Comments: 0

cosh (15)

$$\mathrm{cosh}\:\left(\mathrm{15}\right) \\ $$

Question Number 22082    Answers: 1   Comments: 0

If A is a fifty-element subset of the set {1, 2, 3, ...., 100} such that no two numbers from A add up to 100 show that A contains a square.

$$\mathrm{If}\:{A}\:\mathrm{is}\:\mathrm{a}\:\mathrm{fifty}-\mathrm{element}\:\mathrm{subset}\:\mathrm{of}\:\mathrm{the}\:\mathrm{set} \\ $$$$\left\{\mathrm{1},\:\mathrm{2},\:\mathrm{3},\:....,\:\mathrm{100}\right\}\:\mathrm{such}\:\mathrm{that}\:\mathrm{no}\:\mathrm{two} \\ $$$$\mathrm{numbers}\:\mathrm{from}\:{A}\:\mathrm{add}\:\mathrm{up}\:\mathrm{to}\:\mathrm{100}\:\mathrm{show} \\ $$$$\mathrm{that}\:{A}\:\mathrm{contains}\:\mathrm{a}\:\mathrm{square}. \\ $$

Question Number 22061    Answers: 1   Comments: 0

If 9x^2 +6xy+4y^2 is a factor of 27x^3 −8y^3 . find the other factor.

$$\mathrm{If}\:\mathrm{9x}^{\mathrm{2}} +\mathrm{6xy}+\mathrm{4y}^{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of} \\ $$$$\mathrm{27x}^{\mathrm{3}} −\mathrm{8y}^{\mathrm{3}} .\:\mathrm{find}\:\mathrm{the}\:\mathrm{other}\:\mathrm{factor}. \\ $$

Question Number 22057    Answers: 0   Comments: 0

∫f(x)dx=((d/dx))^2 f(x)=???

$$\int{f}\left({x}\right){dx}=\left(\frac{{d}}{{dx}}\right)^{\mathrm{2}} \\ $$$${f}\left({x}\right)=??? \\ $$

  Pg 350      Pg 351      Pg 352      Pg 353      Pg 354      Pg 355      Pg 356      Pg 357      Pg 358      Pg 359   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com