Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 352

Question Number 24744    Answers: 1   Comments: 0

If a function f is defined such that f:R→R.If f(x)=((3x−2)/(x^2 +5x−6)).Find the (i)domain of f(x) (ii)range of f(x)

$${If}\:{a}\:{function}\:{f}\:{is}\:{defined}\:{such}\:{that} \\ $$$${f}:\mathbb{R}\rightarrow\mathbb{R}.{If}\: \\ $$$$\:\:\:\:{f}\left({x}\right)=\frac{\mathrm{3}{x}−\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{6}}.{Find}\:{the}\: \\ $$$$\left({i}\right){domain}\:{of}\:{f}\left({x}\right) \\ $$$$\left({ii}\right){range}\:{of}\:{f}\left({x}\right) \\ $$

Question Number 24728    Answers: 0   Comments: 0

find sum of : 1^(3 ) − ( 1.5)^3 +2^(3 ) −(2.5)^3 +......... ?

$$\mathrm{find}\:\mathrm{sum}\:\mathrm{of}\:: \\ $$$$\mathrm{1}^{\mathrm{3}\:} −\:\left(\:\mathrm{1}.\mathrm{5}\right)^{\mathrm{3}} \:+\mathrm{2}^{\mathrm{3}\:} −\left(\mathrm{2}.\mathrm{5}\right)^{\mathrm{3}} +.........\:? \\ $$

Question Number 24704    Answers: 1   Comments: 5

Question Number 24701    Answers: 0   Comments: 0

Question Number 24661    Answers: 1   Comments: 2

Question Number 24641    Answers: 1   Comments: 1

Question Number 24576    Answers: 1   Comments: 1

Question Number 24565    Answers: 1   Comments: 0

y=ax^3 +bx^2 +cx+d , then prove that the equation y=0 has only one real root if a[(9ad−bc)^2 −4(b^2 −3ac)(c^2 −3bd)] > 0 provided b^2 > 3ac .

$$\:\:\boldsymbol{{y}}=\boldsymbol{{ax}}^{\mathrm{3}} +\boldsymbol{{bx}}^{\mathrm{2}} +\boldsymbol{{cx}}+\boldsymbol{{d}}\:,\:{then} \\ $$$${prove}\:{that}\:{the}\:{equation}\:{y}=\mathrm{0} \\ $$$${has}\:{only}\:{one}\:{real}\:{root}\:{if} \\ $$$$\:\boldsymbol{{a}}\left[\left(\mathrm{9}\boldsymbol{{ad}}−\boldsymbol{{bc}}\right)^{\mathrm{2}} −\mathrm{4}\left(\boldsymbol{{b}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{{ac}}\right)\left(\boldsymbol{{c}}^{\mathrm{2}} −\mathrm{3}\boldsymbol{{bd}}\right)\right] \\ $$$$\:\:\:\:>\:\mathrm{0}\:\:\:\:\:{provided}\:\:\:\boldsymbol{{b}}^{\mathrm{2}} \:>\:\mathrm{3}\boldsymbol{{ac}}\:. \\ $$

Question Number 24548    Answers: 1   Comments: 0

prove that Σ_(n=1) ^r {n(n−(r/2))^2 }= r∙Σ_(n=1) ^(r/2) n^2 where r = 2k ; k ∈ N

$${prove}\:{that}\: \\ $$$$\underset{{n}=\mathrm{1}} {\overset{{r}} {\sum}}\left\{{n}\left({n}−\frac{{r}}{\mathrm{2}}\right)^{\mathrm{2}} \right\}=\:{r}\centerdot\underset{{n}=\mathrm{1}} {\overset{{r}/\mathrm{2}} {\sum}}{n}^{\mathrm{2}} \\ $$$$\:{where}\:\:\:{r}\:=\:\mathrm{2}{k}\:;\:{k}\:\in\:\mathbb{N} \\ $$

Question Number 24542    Answers: 0   Comments: 2

Prove that coefficient of x^n in ((a+bx+cx^2 )/e^x ) is (((−1)^n )/(n!))[cn^2 −(b+c)n+a]

$${Prove}\:{that}\:{coefficient}\:{of}\:{x}^{{n}} \:{in} \\ $$$$\frac{{a}+{bx}+{cx}^{\mathrm{2}} }{{e}^{{x}} }\:{is}\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\left[{cn}^{\mathrm{2}} −\left({b}+{c}\right){n}+{a}\right] \\ $$

Question Number 24540    Answers: 2   Comments: 1

Prove that (i) Σ_(n=0) ^∞ (n^2 /(n!))=2e. (ii) Σ_(n=0) ^∞ (n^3 /(n!))=5e. (iii) Σ_(n=0) ^∞ (n^4 /(n!))=15e.

$${Prove}\:{that} \\ $$$$\left({i}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{2}} }{{n}!}=\mathrm{2}{e}. \\ $$$$\left({ii}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{3}} }{{n}!}=\mathrm{5}{e}. \\ $$$$\left({iii}\right)\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}^{\mathrm{4}} }{{n}!}=\mathrm{15}{e}. \\ $$

Question Number 24469    Answers: 0   Comments: 2

Let 2x + 3y + 4z = 9, x, y, z > 0 then the maximum value of (1 + x)^2 (2 + y)^3 (4 + z)^4 is

$$\mathrm{Let}\:\mathrm{2}{x}\:+\:\mathrm{3}{y}\:+\:\mathrm{4}{z}\:=\:\mathrm{9},\:{x},\:{y},\:{z}\:>\:\mathrm{0}\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{maximum}\:\mathrm{value}\:\mathrm{of}\:\left(\mathrm{1}\:+\:{x}\right)^{\mathrm{2}} \:\left(\mathrm{2}\:+\:{y}\right)^{\mathrm{3}} \\ $$$$\left(\mathrm{4}\:+\:{z}\right)^{\mathrm{4}} \:\mathrm{is} \\ $$

Question Number 24443    Answers: 2   Comments: 0

Solve for x: (10^(−4) x)^x =4×10^(−8)

$${Solve}\:{for}\:{x}: \\ $$$$\left(\mathrm{10}^{−\mathrm{4}} {x}\right)^{{x}} =\mathrm{4}×\mathrm{10}^{−\mathrm{8}} \\ $$

Question Number 24438    Answers: 0   Comments: 2

Find the sum to infinite terms of the series (x/(1−x^2 ))+(x^2 /(1−x^4 ))+(x^4 /(1−x^8 ))+......

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinite}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{series}\:\frac{{x}}{\mathrm{1}−{x}^{\mathrm{2}} }+\frac{{x}^{\mathrm{2}} }{\mathrm{1}−{x}^{\mathrm{4}} }+\frac{{x}^{\mathrm{4}} }{\mathrm{1}−{x}^{\mathrm{8}} }+...... \\ $$

Question Number 24360    Answers: 0   Comments: 1

Question Number 24359    Answers: 1   Comments: 1

Question Number 24286    Answers: 1   Comments: 0

If ∣x∣ < 1 then (x + 1)(x^2 + 1)(x^4 + 1)(x^8 + 1)(x^(16) + 1)..... is equal to

$$\mathrm{If}\:\mid{x}\mid\:<\:\mathrm{1}\:\mathrm{then} \\ $$$$\left({x}\:+\:\mathrm{1}\right)\left({x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{4}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{8}} \:+\:\mathrm{1}\right)\left({x}^{\mathrm{16}} \:+\:\mathrm{1}\right)..... \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 24142    Answers: 0   Comments: 2

Prove that Σ_(r=1) ^(2n−1) (−1)^(r−1) (∫_0 ^1 x^r (1−x)^(2n−r) dx) =∫_0 ^1 [(1−x)^(2n) +x^(2n) −(1−x)^(2n+1) −x^(2n+1) ]dx

$${Prove}\:{that} \\ $$$$\underset{{r}=\mathrm{1}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{r}−\mathrm{1}} \left(\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}{x}^{{r}} \left(\mathrm{1}−{x}\right)^{\mathrm{2}{n}−{r}} {dx}\right) \\ $$$$=\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left[\left(\mathrm{1}−{x}\right)^{\mathrm{2}{n}} +{x}^{\mathrm{2}{n}} −\left(\mathrm{1}−{x}\right)^{\mathrm{2}{n}+\mathrm{1}} −{x}^{\mathrm{2}{n}+\mathrm{1}} \right]{dx} \\ $$

Question Number 24069    Answers: 1   Comments: 0

Simplify (((log_2 (√5) . log_(25) 20) + log_4 (√(50)) )/(log_4 70 − log_(15) 49))

$$\mathrm{Simplify} \\ $$$$\frac{\left(\mathrm{log}_{\mathrm{2}} \:\sqrt{\mathrm{5}}\:.\:\mathrm{log}_{\mathrm{25}} \:\mathrm{20}\right)\:+\:\mathrm{log}_{\mathrm{4}} \:\sqrt{\mathrm{50}}\:\:}{\mathrm{log}_{\mathrm{4}} \:\mathrm{70}\:−\:\mathrm{log}_{\mathrm{15}} \:\mathrm{49}} \\ $$

Question Number 24010    Answers: 0   Comments: 0

Prove that Σ_(r=1) ^(2n−1) (−1)^(r−1) ∙(r/(^(2n) C_r )) = (n/(n + 1)) .

$$\mathrm{Prove}\:\mathrm{that}\:\underset{{r}=\mathrm{1}} {\overset{\mathrm{2}{n}−\mathrm{1}} {\sum}}\left(−\mathrm{1}\right)^{{r}−\mathrm{1}} \centerdot\frac{{r}}{\:^{\mathrm{2}{n}} {C}_{{r}} }\:=\:\frac{{n}}{{n}\:+\:\mathrm{1}}\:. \\ $$

Question Number 23968    Answers: 0   Comments: 3

Prove that n and 2n−1 are coprime.

$${Prove}\:{that}\:{n}\:{and}\:\mathrm{2}{n}−\mathrm{1}\:{are}\:{coprime}. \\ $$

Question Number 23953    Answers: 0   Comments: 4

find the nth term of the sequence 4, 9, 16, 45, 76 please help

$${find}\:{the}\:{nth}\:{term}\:{of}\:{the}\:{sequence} \\ $$$$\mathrm{4},\:\mathrm{9},\:\mathrm{16},\:\mathrm{45},\:\mathrm{76} \\ $$$$ \\ $$$${please}\:{help} \\ $$

Question Number 23928    Answers: 0   Comments: 4

Find^n C_1 − (1/2)^n C_2 + (1/3)^n C_3 − .... + (−1)^(n−1) (1/n) ∙^n C_n .

$$\mathrm{Find}\:^{{n}} {C}_{\mathrm{1}} \:−\:\frac{\mathrm{1}}{\mathrm{2}}\:^{{n}} {C}_{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\mathrm{3}}\:^{{n}} {C}_{\mathrm{3}} \:−\:....\:+ \\ $$$$\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \frac{\mathrm{1}}{{n}}\:\centerdot\:^{{n}} {C}_{{n}} . \\ $$

Question Number 23884    Answers: 1   Comments: 0

If C_r stands for^n C_r = ((n!)/(r! n − r!)) and Σ_(r=1) ^n r.C_r ^2 = λ for n ≥ 2, then λ is divisible by (1) 3 (n − 1) (2) n + 1 (3) n (2n − 1) (4) n^2 + 1

$$\mathrm{If}\:{C}_{{r}} \:\mathrm{stands}\:\mathrm{for}\:^{{n}} {C}_{{r}} \:=\:\frac{{n}!}{{r}!\:{n}\:−\:{r}!}\:\mathrm{and} \\ $$$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{r}.{C}_{{r}} ^{\mathrm{2}} \:=\:\lambda\:\mathrm{for}\:{n}\:\geqslant\:\mathrm{2},\:\mathrm{then}\:\lambda\:\mathrm{is}\:\mathrm{divisible} \\ $$$$\mathrm{by} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{3}\:\left({n}\:−\:\mathrm{1}\right) \\ $$$$\left(\mathrm{2}\right)\:{n}\:+\:\mathrm{1} \\ $$$$\left(\mathrm{3}\right)\:{n}\:\left(\mathrm{2}{n}\:−\:\mathrm{1}\right) \\ $$$$\left(\mathrm{4}\right)\:{n}^{\mathrm{2}} \:+\:\mathrm{1} \\ $$

Question Number 23814    Answers: 1   Comments: 1

Question Number 23700    Answers: 0   Comments: 3

If (1 − x^3 )^n = Σ_(r=0) ^n a_r x^r (1 − x)^(3n−2r) , then the value of a_r , where n ∈ N is (1)^n C_r ∙3^r (2)^n C_(3r) (3)^n C_(r−1) 2^(r−1) (4)^n C_r 2^r

$$\mathrm{If}\:\left(\mathrm{1}\:−\:{x}^{\mathrm{3}} \right)^{{n}} \:=\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{r}} {x}^{{r}} \left(\mathrm{1}\:−\:{x}\right)^{\mathrm{3}{n}−\mathrm{2}{r}} ,\:\mathrm{then} \\ $$$$\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{a}_{{r}} ,\:\mathrm{where}\:{n}\:\in\:{N}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:^{{n}} {C}_{{r}} \centerdot\mathrm{3}^{{r}} \\ $$$$\left(\mathrm{2}\right)\:^{{n}} {C}_{\mathrm{3}{r}} \\ $$$$\left(\mathrm{3}\right)\:^{{n}} {C}_{{r}−\mathrm{1}} \mathrm{2}^{{r}−\mathrm{1}} \\ $$$$\left(\mathrm{4}\right)\:^{{n}} {C}_{{r}} \mathrm{2}^{{r}} \\ $$

  Pg 347      Pg 348      Pg 349      Pg 350      Pg 351      Pg 352      Pg 353      Pg 354      Pg 355      Pg 356   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com