Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 349

Question Number 25390    Answers: 1   Comments: 0

sin 90

$$\mathrm{sin}\:\mathrm{90} \\ $$

Question Number 25381    Answers: 1   Comments: 0

The first term of a sequence is 1, the second is 2 and every term is the sum of the two preceding terms. The n^(th) term is.

$$\mathrm{The}\:\mathrm{first}\:\mathrm{term}\:\mathrm{of}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{1},\:\mathrm{the} \\ $$$$\mathrm{second}\:\mathrm{is}\:\mathrm{2}\:\mathrm{and}\:\mathrm{every}\:\mathrm{term}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{preceding}\:\mathrm{terms}.\:\mathrm{The}\:{n}^{\mathrm{th}} \:\mathrm{term} \\ $$$$\mathrm{is}. \\ $$

Question Number 25378    Answers: 1   Comments: 0

If log x, log y, log z (x,y,z > 1) are in GP then 2x+log(bx), 3x+log(by), 4x+log(bz) are in A.P. True/False?

$${If}\:\mathrm{log}\:{x},\:\mathrm{log}\:{y},\:\mathrm{log}\:{z}\:\left({x},{y},{z}\:>\:\mathrm{1}\right)\:{are}\:{in} \\ $$$${GP}\:{then}\:\mathrm{2}{x}+\mathrm{log}\left({bx}\right),\:\mathrm{3}{x}+\mathrm{log}\left({by}\right), \\ $$$$\mathrm{4}{x}+\mathrm{log}\left({bz}\right)\:{are}\:{in}\:{A}.{P}. \\ $$$$\boldsymbol{{True}}/\boldsymbol{{False}}? \\ $$

Question Number 25317    Answers: 2   Comments: 0

solvd for x:((√(2+(√3))))^x +((√(2−(√3))))^x =4

$${solvd}\:{for}\:{x}:\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}\right)^{{x}} +\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\right)^{{x}} =\mathrm{4} \\ $$

Question Number 25283    Answers: 2   Comments: 1

Question Number 25246    Answers: 1   Comments: 0

8x^(3/(2n)) −8x^((−3)/(2n)) =63

$$\mathrm{8x}^{\frac{\mathrm{3}}{\mathrm{2n}}} −\mathrm{8x}^{\frac{−\mathrm{3}}{\mathrm{2n}}} \:=\mathrm{63} \\ $$

Question Number 25278    Answers: 0   Comments: 4

Find the number of solutions of log∣x∣ = e^x

$${Find}\:{the}\:{number}\:{of}\:{solutions}\:{of} \\ $$$$\mathrm{log}\mid{x}\mid\:=\:{e}^{{x}} \\ $$

Question Number 25226    Answers: 1   Comments: 0

Show that if x=3−(√3).Show that x^2 +((36)/x^2 )=24

$${Show}\:{that}\:{if}\:{x}=\mathrm{3}−\sqrt{\mathrm{3}}.{Show}\:{that}\:{x}^{\mathrm{2}} +\frac{\mathrm{36}}{{x}^{\mathrm{2}} }=\mathrm{24} \\ $$

Question Number 25215    Answers: 0   Comments: 1

Question Number 25173    Answers: 1   Comments: 0

Show that for all nεN−{0} 7^(2n+1) +1 is an integer multiple of 8.

$${Show}\:{that}\:{for}\:{all}\:{n}\epsilon{N}−\left\{\mathrm{0}\right\}\: \\ $$$$\mathrm{7}^{\mathrm{2}{n}+\mathrm{1}} +\mathrm{1}\:{is}\:{an}\:{integer}\:\:{multiple}\:{of} \\ $$$$\mathrm{8}. \\ $$

Question Number 25171    Answers: 1   Comments: 0

100n>n^2 for integral n>100

$$\mathrm{100}{n}>{n}^{\mathrm{2}} \:{for}\:{integral}\:{n}>\mathrm{100} \\ $$$$ \\ $$

Question Number 25170    Answers: 2   Comments: 2

prove that n^2 >n−5 for integral n≥3

$${prove}\:{that}\:{n}^{\mathrm{2}} >{n}−\mathrm{5}\:{for}\:{integral}\: \\ $$$${n}\geqslant\mathrm{3}\: \\ $$

Question Number 25122    Answers: 0   Comments: 1

3_C_1 + 4_C_2 + 5_C_3 +...........+ 49_C_(47) = ? where n_C_r = ((n!)/(r!×(n−r)!)) .

$$\:\mathrm{3}_{{C}_{\mathrm{1}} } \:+\:\mathrm{4}_{{C}_{\mathrm{2}} } \:+\:\mathrm{5}_{{C}_{\mathrm{3}} } \:+...........+\:\mathrm{49}_{{C}_{\mathrm{47}} } \:=\:? \\ $$$${where}\:{n}_{{C}_{{r}} } \:=\:\frac{{n}!}{{r}!×\left({n}−{r}\right)!}\:. \\ $$

Question Number 25114    Answers: 0   Comments: 1

Question Number 25113    Answers: 0   Comments: 1

Question Number 25112    Answers: 0   Comments: 1

Question Number 25088    Answers: 1   Comments: 1

Q...((x+7)/(x+4))>1, x∈R

$$ \\ $$$$ \\ $$$$ \\ $$$${Q}...\frac{{x}+\mathrm{7}}{{x}+\mathrm{4}}>\mathrm{1},\:\:\:\:\:{x}\in{R} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 25085    Answers: 1   Comments: 0

If a_n −a_(n−1) =1 for every positive integer greater than 1, then a_1 +a_2 +a_3 +...a_(100) equals (1) 5000 . a_1 (2) 5050 . a_1 (3) 5051 . a_1 (3) 5052 . a_2

$${If}\:{a}_{{n}} −{a}_{{n}−\mathrm{1}} =\mathrm{1}\:{for}\:{every}\:{positive} \\ $$$${integer}\:{greater}\:{than}\:\mathrm{1},\:{then}\:{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} \\ $$$$+...{a}_{\mathrm{100}} \:{equals} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{5000}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{5050}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{5051}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{5052}\:.\:{a}_{\mathrm{2}} \\ $$

Question Number 25074    Answers: 0   Comments: 1

Question Number 25066    Answers: 1   Comments: 0

let a,b,c,x,y and z be complex number such that a=((b+c)/(x−2)) ,b=((c+a)/(y−2)) c=((a+b)/(z−2)). xy +yz +zx=1000 and x+y+z=2016 find the value of xyz.

$${let}\:{a},{b},{c},{x},{y}\:{and}\:{z}\:{be}\:{complex}\:{number} \\ $$$${such}\:{that}\:{a}=\frac{{b}+{c}}{{x}−\mathrm{2}}\:,{b}=\frac{{c}+{a}}{{y}−\mathrm{2}}\:\:\:\:{c}=\frac{{a}+{b}}{{z}−\mathrm{2}}. \\ $$$${xy}\:+{yz}\:+{zx}=\mathrm{1000}\:{and}\:{x}+{y}+{z}=\mathrm{2016} \\ $$$${find}\:{the}\:{value}\:{of}\:{xyz}. \\ $$

Question Number 25054    Answers: 1   Comments: 0

If x:y=5:2, then find the value of (8x+9y)/(8x+27)

$${If}\:{x}:{y}=\mathrm{5}:\mathrm{2},\:{then}\:{find}\:{the}\:{value}\:{of}\:\left(\mathrm{8}{x}+\mathrm{9}{y}\right)/\left(\mathrm{8}{x}+\mathrm{27}\right) \\ $$

Question Number 25053    Answers: 2   Comments: 0

If 2A=3B=4C find the value of A:B:C

$${If}\:\mathrm{2}{A}=\mathrm{3}{B}=\mathrm{4}{C}\:{find}\:{the}\:{value}\:{of}\:{A}:{B}:{C} \\ $$

Question Number 25049    Answers: 1   Comments: 1

If I = Σ_(k=1) ^(98) ∫_k ^(k+1) ((k + 1)/(x(x + 1)))dx, then (1) I > ((49)/(50)) (2) I < ((49)/(50)) (3) I < log_e 99 (4) I > log_e 99

$$\mathrm{If}\:{I}\:=\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{98}} {\sum}}\underset{{k}} {\overset{{k}+\mathrm{1}} {\int}}\frac{{k}\:+\:\mathrm{1}}{{x}\left({x}\:+\:\mathrm{1}\right)}{dx},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{I}\:>\:\frac{\mathrm{49}}{\mathrm{50}} \\ $$$$\left(\mathrm{2}\right)\:{I}\:<\:\frac{\mathrm{49}}{\mathrm{50}} \\ $$$$\left(\mathrm{3}\right)\:{I}\:<\:\mathrm{log}_{{e}} \mathrm{99} \\ $$$$\left(\mathrm{4}\right)\:{I}\:>\:\mathrm{log}_{{e}} \mathrm{99} \\ $$

Question Number 25046    Answers: 1   Comments: 0

Show that (a) N=((10^(143) −1)/9) is composite, and (b) N has two factors each of which is a series of a G.P.

$${Show}\:{that} \\ $$$$\left({a}\right)\:{N}=\frac{\mathrm{10}^{\mathrm{143}} −\mathrm{1}}{\mathrm{9}}\:{is}\:{composite},\:{and} \\ $$$$\left({b}\right)\:{N}\:{has}\:{two}\:{factors}\:{each}\:{of}\:{which}\:{is} \\ $$$${a}\:{series}\:{of}\:{a}\:{G}.{P}. \\ $$

Question Number 25025    Answers: 2   Comments: 0

If a^4 + b^4 + c^4 + d^4 = 16, prove that: a^5 + b^5 + c^5 + d^5 ≤ 32 for a, b, c, d ∈ R

$$\mathrm{If}\:\:\:\:\mathrm{a}^{\mathrm{4}} \:+\:\mathrm{b}^{\mathrm{4}} \:+\:\mathrm{c}^{\mathrm{4}} \:+\:\mathrm{d}^{\mathrm{4}} \:=\:\mathrm{16},\:\:\mathrm{prove}\:\mathrm{that}:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}} \:+\:\mathrm{d}^{\mathrm{5}} \:\leqslant\:\mathrm{32} \\ $$$$\mathrm{for}\:\:\mathrm{a},\:\mathrm{b},\:\mathrm{c},\:\mathrm{d}\:\in\:\mathbb{R} \\ $$

Question Number 25023    Answers: 1   Comments: 0

Consider the function f(x) which satisfying the functional equation 2f(x) + f(1 − x) = x^2 + 1, ∀ x ∈ R and g(x) = 3f(x) + 1. The range of φ(x) = g(x) + (1/(g(x) + 1)) is

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)\:\mathrm{which} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{functional}\:\mathrm{equation} \\ $$$$\mathrm{2}{f}\left({x}\right)\:+\:{f}\left(\mathrm{1}\:−\:{x}\right)\:=\:{x}^{\mathrm{2}} \:+\:\mathrm{1},\:\forall\:{x}\:\in\:{R} \\ $$$$\mathrm{and}\:{g}\left({x}\right)\:=\:\mathrm{3}{f}\left({x}\right)\:+\:\mathrm{1}.\:\mathrm{The}\:\mathrm{range}\:\mathrm{of} \\ $$$$\phi\left({x}\right)\:=\:{g}\left({x}\right)\:+\:\frac{\mathrm{1}}{{g}\left({x}\right)\:+\:\mathrm{1}}\:\mathrm{is} \\ $$

  Pg 344      Pg 345      Pg 346      Pg 347      Pg 348      Pg 349      Pg 350      Pg 351      Pg 352      Pg 353   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com