Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 347

Question Number 19646    Answers: 0   Comments: 1

Find the sum of all possible digits that comes at ten′s place for 3^n where n is any natural number.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{digits}\:\mathrm{that} \\ $$$$\mathrm{comes}\:\mathrm{at}\:\mathrm{ten}'\mathrm{s}\:\mathrm{place}\:\mathrm{for}\:\mathrm{3}^{{n}} \:\mathrm{where}\:{n}\:\mathrm{is} \\ $$$$\mathrm{any}\:\mathrm{natural}\:\mathrm{number}. \\ $$

Question Number 19638    Answers: 1   Comments: 0

Let P(x) is a polynomial such that P(1) = 1, P(2) = 2, P(3) = 3, and P(4) = 5. Find the value of P(6).

$$\mathrm{Let}\:{P}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{such}\:\mathrm{that} \\ $$$${P}\left(\mathrm{1}\right)\:=\:\mathrm{1},\:{P}\left(\mathrm{2}\right)\:=\:\mathrm{2},\:{P}\left(\mathrm{3}\right)\:=\:\mathrm{3},\:\mathrm{and} \\ $$$${P}\left(\mathrm{4}\right)\:=\:\mathrm{5}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}\left(\mathrm{6}\right). \\ $$

Question Number 19643    Answers: 1   Comments: 0

Find the real solution of the equation (√(17 + 8x − 2x^2 )) + (√(4 + 12x − 3x^2 )) = x^2 − 4x + 13.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\sqrt{\mathrm{17}\:+\:\mathrm{8}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{4}\:+\:\mathrm{12}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} }\:=\:{x}^{\mathrm{2}} \\ $$$$−\:\mathrm{4}{x}\:+\:\mathrm{13}. \\ $$

Question Number 19629    Answers: 1   Comments: 0

If ∣z∣ = 2, then the points representing the complex numbers −1 + 5z will lie on a (1) Circle (2) Straight line (3) Parabola (4) Ellipse

$$\mathrm{If}\:\mid{z}\mid\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{the}\:\mathrm{points}\:\mathrm{representing} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:−\mathrm{1}\:+\:\mathrm{5}{z}\:\mathrm{will}\:\mathrm{lie} \\ $$$$\mathrm{on}\:\mathrm{a} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Circle} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Straight}\:\mathrm{line} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Parabola} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Ellipse} \\ $$

Question Number 19623    Answers: 1   Comments: 0

Find the locus of z if arg(((z − 2)/(z − 3))) = (π/4)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{locus}\:\mathrm{of}\:{z}\:\mathrm{if}\:\mathrm{arg}\left(\frac{{z}\:−\:\mathrm{2}}{{z}\:−\:\mathrm{3}}\right)\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Question Number 19609    Answers: 1   Comments: 0

Question Number 19604    Answers: 1   Comments: 1

Question Number 19592    Answers: 0   Comments: 2

Question Number 19574    Answers: 0   Comments: 5

Carol was given three numbers and was asked to add the largest of the three to the product of the other two. Instead, she multiplied the largest with the sum of the other two, but still got the right answer. What is the sum of the three numbers?

$$\mathrm{Carol}\:\mathrm{was}\:\mathrm{given}\:\mathrm{three}\:\mathrm{numbers}\:\mathrm{and} \\ $$$$\mathrm{was}\:\mathrm{asked}\:\mathrm{to}\:\mathrm{add}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{to}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two}. \\ $$$$\mathrm{Instead},\:\mathrm{she}\:\mathrm{multiplied}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two},\:\mathrm{but}\:\mathrm{still}\:\mathrm{got} \\ $$$$\mathrm{the}\:\mathrm{right}\:\mathrm{answer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{three}\:\mathrm{numbers}? \\ $$

Question Number 19508    Answers: 0   Comments: 0

Prove that the length of perpendicular drawn from the point z_0 to the straight line α^ z + αz^ + c = 0 is p = ∣((α^ z_0 + αz_0 ^ + c)/(2 ∣α∣))∣.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{length}\:\mathrm{of}\:\mathrm{perpendicular} \\ $$$$\mathrm{drawn}\:\mathrm{from}\:\mathrm{the}\:\mathrm{point}\:{z}_{\mathrm{0}} \:\mathrm{to}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{is} \\ $$$${p}\:=\:\mid\frac{\bar {\alpha}{z}_{\mathrm{0}} \:+\:\alpha\bar {{z}}_{\mathrm{0}} \:+\:{c}}{\mathrm{2}\:\mid\alpha\mid}\mid. \\ $$

Question Number 19507    Answers: 1   Comments: 0

Prove that three points z_1 , z_2 , z_3 are collinear if determinant ((z_1 ,z_1 ^ ,1),(z_2 ,z_2 ^ ,1),(z_3 ,z_3 ^ ,1))= 0

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{three}\:\mathrm{points}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are} \\ $$$$\mathrm{collinear}\:\mathrm{if}\:\begin{vmatrix}{{z}_{\mathrm{1}} }&{\bar {{z}}_{\mathrm{1}} }&{\mathrm{1}}\\{{z}_{\mathrm{2}} }&{\bar {{z}}_{\mathrm{2}} }&{\mathrm{1}}\\{{z}_{\mathrm{3}} }&{\bar {{z}}_{\mathrm{3}} }&{\mathrm{1}}\end{vmatrix}=\:\mathrm{0} \\ $$

Question Number 19506    Answers: 1   Comments: 0

Prove that the equation of the line joining the points z_1 and z_2 can be put in the form z = tz_1 + (1 − t)z_2 , where t is a parameter.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{points}\:{z}_{\mathrm{1}} \:\mathrm{and}\:{z}_{\mathrm{2}} \:\mathrm{can}\:\mathrm{be}\:\mathrm{put} \\ $$$$\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:{z}\:=\:{tz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:−\:{t}\right){z}_{\mathrm{2}} ,\:\mathrm{where} \\ $$$${t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{parameter}. \\ $$

Question Number 19505    Answers: 1   Comments: 0

Prove that two straight lines with complex slopes μ_1 and μ_2 are parallel and perpendicular according as μ_1 = μ_2 and μ_1 + μ_2 = 0. Hence if the straight lines α^ z + αz^ + c = 0 and β^ z + βz^ + k = 0 are parallel and perpendicular according as α^ β − αβ^ = 0 and α^ β + αβ^ = 0.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{two}\:\mathrm{straight}\:\mathrm{lines}\:\mathrm{with} \\ $$$$\mathrm{complex}\:\mathrm{slopes}\:\mu_{\mathrm{1}} \:\mathrm{and}\:\mu_{\mathrm{2}} \:\mathrm{are}\:\mathrm{parallel} \\ $$$$\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according}\:\mathrm{as}\:\mu_{\mathrm{1}} \:=\:\mu_{\mathrm{2}} \\ $$$$\mathrm{and}\:\mu_{\mathrm{1}} \:+\:\mu_{\mathrm{2}} \:=\:\mathrm{0}.\:\mathrm{Hence}\:\mathrm{if}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{lines}\:\bar {\alpha}{z}\:+\:\alpha\bar {{z}}\:+\:{c}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\beta}{z}\:+\:\beta\bar {{z}}\:+\:{k}\:=\:\mathrm{0} \\ $$$$\mathrm{are}\:\mathrm{parallel}\:\mathrm{and}\:\mathrm{perpendicular}\:\mathrm{according} \\ $$$$\mathrm{as}\:\bar {\alpha}\beta\:−\:\alpha\bar {\beta}\:=\:\mathrm{0}\:\mathrm{and}\:\bar {\alpha}\beta\:+\:\alpha\bar {\beta}\:=\:\mathrm{0}. \\ $$

Question Number 19557    Answers: 1   Comments: 3

Question Number 19556    Answers: 0   Comments: 0

Question Number 19499    Answers: 1   Comments: 0

Find the last digit of 2^(253)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{digit}\:\mathrm{of}\:\:\mathrm{2}^{\mathrm{253}} \\ $$

Question Number 19455    Answers: 1   Comments: 0

Prove that if z = cos 6° + i sin 6°, then (1/(z^2 + 1)) − ((iz)/(z^4 − 1)) + ((iz^3 )/(z^8 − 1)) + ((iz^7 )/(z^(16) − 1)) = 0.

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{z}\:=\:\mathrm{cos}\:\mathrm{6}°\:+\:{i}\:\mathrm{sin}\:\mathrm{6}°,\:\mathrm{then} \\ $$$$\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\frac{{iz}}{{z}^{\mathrm{4}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{3}} }{{z}^{\mathrm{8}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{7}} }{{z}^{\mathrm{16}} \:−\:\mathrm{1}}\:=\:\mathrm{0}. \\ $$

Question Number 19435    Answers: 1   Comments: 0

If α = cos ((2π)/5) + i sin ((2π)/5) , then find the value of α + α^2 + α^3 + α^4 .

$$\mathrm{If}\:\alpha\:=\:\mathrm{cos}\:\frac{\mathrm{2}\pi}{\mathrm{5}}\:+\:{i}\:\mathrm{sin}\:\frac{\mathrm{2}\pi}{\mathrm{5}}\:,\:\mathrm{then}\:\mathrm{find}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\alpha\:+\:\alpha^{\mathrm{2}} \:+\:\alpha^{\mathrm{3}} \:+\:\alpha^{\mathrm{4}} . \\ $$

Question Number 19434    Answers: 1   Comments: 0

If (((1 + i(√3))/(1 − i(√3))))^n is an integer, then n is

$$\mathrm{If}\:\left(\frac{\mathrm{1}\:+\:{i}\sqrt{\mathrm{3}}}{\mathrm{1}\:−\:{i}\sqrt{\mathrm{3}}}\right)^{{n}} \:\mathrm{is}\:\mathrm{an}\:\mathrm{integer},\:\mathrm{then}\:{n}\:\mathrm{is} \\ $$

Question Number 19433    Answers: 1   Comments: 0

(((√(5 + 12i)) + (√(5 − 12i)))/((√(5 + 12i)) − (√(5 − 12i)))) =

$$\frac{\sqrt{\mathrm{5}\:+\:\mathrm{12}{i}}\:+\:\sqrt{\mathrm{5}\:−\:\mathrm{12}{i}}}{\sqrt{\mathrm{5}\:+\:\mathrm{12}{i}}\:−\:\sqrt{\mathrm{5}\:−\:\mathrm{12}{i}}}\:= \\ $$

Question Number 19413    Answers: 1   Comments: 1

How many integer pairs (x, y) satisfy x^2 + 4y^2 − 2xy − 2x − 4y − 8 = 0?

$$\mathrm{How}\:\mathrm{many}\:\mathrm{integer}\:\mathrm{pairs}\:\left({x},\:{y}\right)\:\mathrm{satisfy} \\ $$$${x}^{\mathrm{2}} \:+\:\mathrm{4}{y}^{\mathrm{2}} \:−\:\mathrm{2}{xy}\:−\:\mathrm{2}{x}\:−\:\mathrm{4}{y}\:−\:\mathrm{8}\:=\:\mathrm{0}? \\ $$

Question Number 19403    Answers: 1   Comments: 1

Let P(n) = (n + 1)(n + 3)(n + 5)(n + 7)(n + 9). What is the largest integer that is a divisor of P(n) for all positive even integers n?

$$\mathrm{Let}\:{P}\left({n}\right)\:=\:\left({n}\:+\:\mathrm{1}\right)\left({n}\:+\:\mathrm{3}\right)\left({n}\:+\:\mathrm{5}\right)\left({n}\:+\:\mathrm{7}\right)\left({n}\:+\:\mathrm{9}\right). \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{integer}\:\mathrm{that}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{divisor}\:\mathrm{of}\:{P}\left({n}\right)\:\mathrm{for}\:\mathrm{all}\:\mathrm{positive}\:\mathrm{even} \\ $$$$\mathrm{integers}\:{n}? \\ $$

Question Number 19555    Answers: 1   Comments: 0

Find center and radius of circle having equation zz^ + (1 − i)z + (1 + i)z^ − 1 = 0.

$$\mathrm{Find}\:\mathrm{center}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{having} \\ $$$$\mathrm{equation}\:{z}\bar {{z}}\:+\:\left(\mathrm{1}\:−\:{i}\right){z}\:+\:\left(\mathrm{1}\:+\:{i}\right)\bar {{z}}\:−\:\mathrm{1}\:=\:\mathrm{0}. \\ $$

Question Number 19391    Answers: 0   Comments: 1

Question Number 19351    Answers: 1   Comments: 2

Prove that ∣z_1 + z_2 ∣^2 = ∣z_1 ∣^2 + ∣z_2 ∣^2 ⇔ (z_1 /z_2 ) is purely imaginary number.

$$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:=\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:\Leftrightarrow \\ $$$$\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }\:\mathrm{is}\:\mathrm{purely}\:\mathrm{imaginary}\:\mathrm{number}. \\ $$

Question Number 19350    Answers: 1   Comments: 0

Prove that ∣z_1 + z_2 ∣ = ∣z_1 − z_2 ∣ ⇔ arg(z_1 ) − arg(z_2 ) = (π/2)

$$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{1}} \:−\:{z}_{\mathrm{2}} \mid\:\Leftrightarrow \\ $$$$\mathrm{arg}\left({z}_{\mathrm{1}} \right)\:−\:\mathrm{arg}\left({z}_{\mathrm{2}} \right)\:=\:\frac{\pi}{\mathrm{2}} \\ $$

  Pg 342      Pg 343      Pg 344      Pg 345      Pg 346      Pg 347      Pg 348      Pg 349      Pg 350      Pg 351   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com