MrW1
Before we concluded that:
Φ=Σ_(x=0) ^m Σ_(y=0) ^n (1−sgn(x−x′))
If you do:
Σ_(x=0) ^1 Σ_(y=0) ^1 (1−sgn(x−x′))
=Σ_(x=0) ^1 Σ_(y=0) ^1 (1−sgn(x−((LCM(x,y))/y)))
=(1−sgn(0−((LCM(0,0))/0)))+(1−sgn(1−((LCM(1,0))/0))
+(1−sgn(0−((LCM(0,1))/1)))+(1−sgn(1−((LCM(1,1))/1))
=(1−sgn(−((LCM(0,0))/0)))+(1−sgn(1−(0/0)))
+(1−sgn(−(0/1)))+(1−sgn(1−(1/1)))
=????
|