If C_r stands for^n C_r = ((n!)/(r! n − r!)) and
Σ_(r=1) ^n r.C_r ^2 = λ for n ≥ 2, then λ is divisible
by
(1) 3 (n − 1)
(2) n + 1
(3) n (2n − 1)
(4) n^2 + 1
If (1 − x^3 )^n = Σ_(r=0) ^n a_r x^r (1 − x)^(3n−2r) , then
the value of a_r , where n ∈ N is
(1)^n C_r ∙3^r
(2)^n C_(3r)
(3)^n C_(r−1) 2^(r−1)
(4)^n C_r 2^r
Let n be a positive integer and p_1 , p_2 ,
..., p_n be n prime numbers all larger
than 5 such that 6 divides p_1 ^2 + p_2 ^2 + ... +
p_n ^2 . Prove that 6 divides n.