Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 346

Question Number 25114    Answers: 0   Comments: 1

Question Number 25113    Answers: 0   Comments: 1

Question Number 25112    Answers: 0   Comments: 1

Question Number 25088    Answers: 1   Comments: 1

Q...((x+7)/(x+4))>1, x∈R

$$ \\ $$$$ \\ $$$$ \\ $$$${Q}...\frac{{x}+\mathrm{7}}{{x}+\mathrm{4}}>\mathrm{1},\:\:\:\:\:{x}\in{R} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 25085    Answers: 1   Comments: 0

If a_n −a_(n−1) =1 for every positive integer greater than 1, then a_1 +a_2 +a_3 +...a_(100) equals (1) 5000 . a_1 (2) 5050 . a_1 (3) 5051 . a_1 (3) 5052 . a_2

$${If}\:{a}_{{n}} −{a}_{{n}−\mathrm{1}} =\mathrm{1}\:{for}\:{every}\:{positive} \\ $$$${integer}\:{greater}\:{than}\:\mathrm{1},\:{then}\:{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} \\ $$$$+...{a}_{\mathrm{100}} \:{equals} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{5000}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{5050}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{5051}\:.\:{a}_{\mathrm{1}} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{5052}\:.\:{a}_{\mathrm{2}} \\ $$

Question Number 25074    Answers: 0   Comments: 1

Question Number 25066    Answers: 1   Comments: 0

let a,b,c,x,y and z be complex number such that a=((b+c)/(x−2)) ,b=((c+a)/(y−2)) c=((a+b)/(z−2)). xy +yz +zx=1000 and x+y+z=2016 find the value of xyz.

$${let}\:{a},{b},{c},{x},{y}\:{and}\:{z}\:{be}\:{complex}\:{number} \\ $$$${such}\:{that}\:{a}=\frac{{b}+{c}}{{x}−\mathrm{2}}\:,{b}=\frac{{c}+{a}}{{y}−\mathrm{2}}\:\:\:\:{c}=\frac{{a}+{b}}{{z}−\mathrm{2}}. \\ $$$${xy}\:+{yz}\:+{zx}=\mathrm{1000}\:{and}\:{x}+{y}+{z}=\mathrm{2016} \\ $$$${find}\:{the}\:{value}\:{of}\:{xyz}. \\ $$

Question Number 25054    Answers: 1   Comments: 0

If x:y=5:2, then find the value of (8x+9y)/(8x+27)

$${If}\:{x}:{y}=\mathrm{5}:\mathrm{2},\:{then}\:{find}\:{the}\:{value}\:{of}\:\left(\mathrm{8}{x}+\mathrm{9}{y}\right)/\left(\mathrm{8}{x}+\mathrm{27}\right) \\ $$

Question Number 25053    Answers: 2   Comments: 0

If 2A=3B=4C find the value of A:B:C

$${If}\:\mathrm{2}{A}=\mathrm{3}{B}=\mathrm{4}{C}\:{find}\:{the}\:{value}\:{of}\:{A}:{B}:{C} \\ $$

Question Number 25049    Answers: 1   Comments: 1

If I = Σ_(k=1) ^(98) ∫_k ^(k+1) ((k + 1)/(x(x + 1)))dx, then (1) I > ((49)/(50)) (2) I < ((49)/(50)) (3) I < log_e 99 (4) I > log_e 99

$$\mathrm{If}\:{I}\:=\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{98}} {\sum}}\underset{{k}} {\overset{{k}+\mathrm{1}} {\int}}\frac{{k}\:+\:\mathrm{1}}{{x}\left({x}\:+\:\mathrm{1}\right)}{dx},\:\mathrm{then} \\ $$$$\left(\mathrm{1}\right)\:{I}\:>\:\frac{\mathrm{49}}{\mathrm{50}} \\ $$$$\left(\mathrm{2}\right)\:{I}\:<\:\frac{\mathrm{49}}{\mathrm{50}} \\ $$$$\left(\mathrm{3}\right)\:{I}\:<\:\mathrm{log}_{{e}} \mathrm{99} \\ $$$$\left(\mathrm{4}\right)\:{I}\:>\:\mathrm{log}_{{e}} \mathrm{99} \\ $$

Question Number 25046    Answers: 1   Comments: 0

Show that (a) N=((10^(143) −1)/9) is composite, and (b) N has two factors each of which is a series of a G.P.

$${Show}\:{that} \\ $$$$\left({a}\right)\:{N}=\frac{\mathrm{10}^{\mathrm{143}} −\mathrm{1}}{\mathrm{9}}\:{is}\:{composite},\:{and} \\ $$$$\left({b}\right)\:{N}\:{has}\:{two}\:{factors}\:{each}\:{of}\:{which}\:{is} \\ $$$${a}\:{series}\:{of}\:{a}\:{G}.{P}. \\ $$

Question Number 25025    Answers: 2   Comments: 0

If a^4 + b^4 + c^4 + d^4 = 16, prove that: a^5 + b^5 + c^5 + d^5 ≤ 32 for a, b, c, d ∈ R

$$\mathrm{If}\:\:\:\:\mathrm{a}^{\mathrm{4}} \:+\:\mathrm{b}^{\mathrm{4}} \:+\:\mathrm{c}^{\mathrm{4}} \:+\:\mathrm{d}^{\mathrm{4}} \:=\:\mathrm{16},\:\:\mathrm{prove}\:\mathrm{that}:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}} \:+\:\mathrm{d}^{\mathrm{5}} \:\leqslant\:\mathrm{32} \\ $$$$\mathrm{for}\:\:\mathrm{a},\:\mathrm{b},\:\mathrm{c},\:\mathrm{d}\:\in\:\mathbb{R} \\ $$

Question Number 25023    Answers: 1   Comments: 0

Consider the function f(x) which satisfying the functional equation 2f(x) + f(1 − x) = x^2 + 1, ∀ x ∈ R and g(x) = 3f(x) + 1. The range of φ(x) = g(x) + (1/(g(x) + 1)) is

$$\mathrm{Consider}\:\mathrm{the}\:\mathrm{function}\:{f}\left({x}\right)\:\mathrm{which} \\ $$$$\mathrm{satisfying}\:\mathrm{the}\:\mathrm{functional}\:\mathrm{equation} \\ $$$$\mathrm{2}{f}\left({x}\right)\:+\:{f}\left(\mathrm{1}\:−\:{x}\right)\:=\:{x}^{\mathrm{2}} \:+\:\mathrm{1},\:\forall\:{x}\:\in\:{R} \\ $$$$\mathrm{and}\:{g}\left({x}\right)\:=\:\mathrm{3}{f}\left({x}\right)\:+\:\mathrm{1}.\:\mathrm{The}\:\mathrm{range}\:\mathrm{of} \\ $$$$\phi\left({x}\right)\:=\:{g}\left({x}\right)\:+\:\frac{\mathrm{1}}{{g}\left({x}\right)\:+\:\mathrm{1}}\:\mathrm{is} \\ $$

Question Number 25001    Answers: 0   Comments: 5

If x, y > 0, then the minimum value of 2x^2 + (2/x) − 2x + 2y^2 + (2/y) − 2y + 2 is equal to

$$\mathrm{If}\:{x},\:{y}\:>\:\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} \:+\:\frac{\mathrm{2}}{{x}}\:−\:\mathrm{2}{x}\:+\:\mathrm{2}{y}^{\mathrm{2}} \:+\:\frac{\mathrm{2}}{{y}}\:−\:\mathrm{2}{y}\:+\:\mathrm{2}\:\mathrm{is} \\ $$$$\mathrm{equal}\:\mathrm{to} \\ $$

Question Number 24908    Answers: 0   Comments: 0

If a, b, c are the sides of a triangle prove the following inequality: (a/(c + a − b)) + (b/(a + b − c)) + (c/(b + c − a)) ≥ 3.

$$\mathrm{If}\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}\:\mathrm{prove} \\ $$$$\mathrm{the}\:\mathrm{following}\:\mathrm{inequality}: \\ $$$$\frac{{a}}{{c}\:+\:{a}\:−\:{b}}\:+\:\frac{{b}}{{a}\:+\:{b}\:−\:{c}}\:+\:\frac{{c}}{{b}\:+\:{c}\:−\:{a}}\:\geqslant\:\mathrm{3}. \\ $$

Question Number 24834    Answers: 0   Comments: 1

how many thirds are there in 1/3?

$${how}\:{many}\:{thirds}\:{are}\:{there}\:{in}\:\mathrm{1}/\mathrm{3}? \\ $$

Question Number 24821    Answers: 1   Comments: 0

Draw the graph of the function ((f/g))(x) if f,g:R→R are given by f(x)=2x−1,g(x)=x+1.Find the domain and the range of ((f/g))(x)

$${Draw}\:{the}\:{graph}\:{of}\:{the}\:{function} \\ $$$$\left(\frac{{f}}{{g}}\right)\left({x}\right)\:{if}\:{f},{g}:\mathbb{R}\rightarrow\mathbb{R}\:{are}\:{given}\:{by} \\ $$$${f}\left({x}\right)=\mathrm{2}{x}−\mathrm{1},{g}\left({x}\right)={x}+\mathrm{1}.{Find}\:{the} \\ $$$${domain}\:{and}\:{the}\:{range}\:{of}\:\left(\frac{{f}}{{g}}\right)\left({x}\right) \\ $$$$ \\ $$

Question Number 24813    Answers: 0   Comments: 1

please find value of x 2x+2=0

$$\mathrm{please}\:\mathrm{find}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x} \\ $$$$\mathrm{2x}+\mathrm{2}=\mathrm{0} \\ $$

Question Number 24764    Answers: 2   Comments: 0

Given that the function f:R→R is defined by f(x)=x^n .For what values of n,if any,is fof=f.f? For each of these values of n find fof.

$${Given}\:{that}\:{the}\:{function}\:{f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${is}\:{defined}\:{by}\:{f}\left({x}\right)={x}^{{n}} .{For}\:{what} \\ $$$${values}\:{of}\:{n},{if}\:{any},{is}\:{fof}={f}.{f}? \\ $$$${For}\:{each}\:{of}\:{these}\:{values}\:{of}\:{n}\:{find} \\ $$$${fof}. \\ $$

Question Number 24753    Answers: 1   Comments: 0

Question Number 24747    Answers: 1   Comments: 0

if f(x)=2∣x−3∣ and g(x)=x^2 .Find: (i)gof (ii)fog (iii)domain of fog (iv)range of gof

$${if}\:{f}\left({x}\right)=\mathrm{2}\mid{x}−\mathrm{3}\mid\:{and}\:{g}\left({x}\right)={x}^{\mathrm{2}} .{Find}: \\ $$$$\left({i}\right){gof}\:\left({ii}\right){fog}\:\left({iii}\right){domain}\:{of}\:{fog} \\ $$$$\left({iv}\right){range}\:{of}\:{gof} \\ $$$$ \\ $$

Question Number 24744    Answers: 1   Comments: 0

If a function f is defined such that f:R→R.If f(x)=((3x−2)/(x^2 +5x−6)).Find the (i)domain of f(x) (ii)range of f(x)

$${If}\:{a}\:{function}\:{f}\:{is}\:{defined}\:{such}\:{that} \\ $$$${f}:\mathbb{R}\rightarrow\mathbb{R}.{If}\: \\ $$$$\:\:\:\:{f}\left({x}\right)=\frac{\mathrm{3}{x}−\mathrm{2}}{{x}^{\mathrm{2}} +\mathrm{5}{x}−\mathrm{6}}.{Find}\:{the}\: \\ $$$$\left({i}\right){domain}\:{of}\:{f}\left({x}\right) \\ $$$$\left({ii}\right){range}\:{of}\:{f}\left({x}\right) \\ $$

Question Number 24728    Answers: 0   Comments: 0

find sum of : 1^(3 ) − ( 1.5)^3 +2^(3 ) −(2.5)^3 +......... ?

$$\mathrm{find}\:\mathrm{sum}\:\mathrm{of}\:: \\ $$$$\mathrm{1}^{\mathrm{3}\:} −\:\left(\:\mathrm{1}.\mathrm{5}\right)^{\mathrm{3}} \:+\mathrm{2}^{\mathrm{3}\:} −\left(\mathrm{2}.\mathrm{5}\right)^{\mathrm{3}} +.........\:? \\ $$

Question Number 24704    Answers: 1   Comments: 5

Question Number 24701    Answers: 0   Comments: 0

Question Number 24661    Answers: 1   Comments: 2

  Pg 341      Pg 342      Pg 343      Pg 344      Pg 345      Pg 346      Pg 347      Pg 348      Pg 349      Pg 350   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com