Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 345

Question Number 29647    Answers: 0   Comments: 1

Question Number 29520    Answers: 1   Comments: 0

to make an open fish tank a glass sheet of 2mm gauge is used .the outer length ,breadth and height are 60.4 , 40.4, 40.2 respectively .how much maximum volume of water will be contained in it ?

$$\mathrm{to}\:\mathrm{make}\:\mathrm{an}\:\mathrm{open}\:\mathrm{fish}\:\mathrm{tank}\:\mathrm{a}\:\mathrm{glass}\:\mathrm{sheet}\:\mathrm{of}\: \\ $$$$\mathrm{2mm}\:\mathrm{gauge}\:\mathrm{is}\:\mathrm{used}\:.\mathrm{the}\:\mathrm{outer}\:\mathrm{length} \\ $$$$,\mathrm{breadth}\:\mathrm{and}\:\mathrm{height}\:\mathrm{are}\:\mathrm{60}.\mathrm{4}\:,\:\mathrm{40}.\mathrm{4},\: \\ $$$$\mathrm{40}.\mathrm{2}\:\mathrm{respectively}\:.\mathrm{how}\:\mathrm{much}\:\mathrm{maximum} \\ $$$$\mathrm{volume}\:\mathrm{of}\:\mathrm{water}\:\mathrm{will}\:\mathrm{be}\:\mathrm{contained}\:\mathrm{in}\:\mathrm{it}\:? \\ $$$$ \\ $$

Question Number 29433    Answers: 1   Comments: 0

4(2x^2 )=8^x

$$\mathrm{4}\left(\mathrm{2x}^{\mathrm{2}} \right)=\mathrm{8}^{\mathrm{x}} \\ $$

Question Number 29424    Answers: 0   Comments: 8

Question Number 29362    Answers: 1   Comments: 2

Question Number 29345    Answers: 1   Comments: 0

solve simultanrodly x+y=5.....(1) x^y +y^x =17.....(2)

$$\mathrm{solve}\:\mathrm{simultanrodly} \\ $$$$ \\ $$$$\mathrm{x}+\mathrm{y}=\mathrm{5}.....\left(\mathrm{1}\right) \\ $$$$\mathrm{x}^{\mathrm{y}} +\mathrm{y}^{\mathrm{x}} =\mathrm{17}.....\left(\mathrm{2}\right) \\ $$

Question Number 29264    Answers: 1   Comments: 0

there are 25 persons in a conical tent every person needs an area of 4 sq m on the ground under the tent. if height if the tent is 18m.find the volume of the tent.

$$\mathrm{there}\:\mathrm{are}\:\mathrm{25}\:\mathrm{persons}\:\mathrm{in}\:\mathrm{a}\:\mathrm{conical}\:\mathrm{tent} \\ $$$$\mathrm{every}\:\mathrm{person}\:\mathrm{needs}\:\mathrm{an}\:\mathrm{area}\:\mathrm{of}\:\mathrm{4}\:\mathrm{sq}\:\mathrm{m}\: \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{ground}\:\mathrm{under}\:\mathrm{the}\:\mathrm{tent}.\:\mathrm{if} \\ $$$$\mathrm{height}\:\mathrm{if}\:\mathrm{the}\:\mathrm{tent}\:\mathrm{is}\:\mathrm{18m}.\mathrm{find}\:\mathrm{the}\:\mathrm{volume} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{tent}. \\ $$

Question Number 29259    Answers: 1   Comments: 0

solve the equation 2x+3y=5 3x+4y=4

$${solve}\:{the}\:{equation} \\ $$$$\mathrm{2}{x}+\mathrm{3}{y}=\mathrm{5} \\ $$$$\mathrm{3}{x}+\mathrm{4}{y}=\mathrm{4}\: \\ $$

Question Number 29196    Answers: 0   Comments: 0

Let s = n_c_1 − (1+(1/2))n_c_2 +(1+(1/2)+(1/3))n_c_3 +.......+(−1)^(n−1) (1+(1/2)+(1/3)+....+(1/n))n_c_n then prove that s×n =1.

$$\mathrm{Let}\:\mathrm{s}\:=\:\mathrm{n}_{\mathrm{c}_{\mathrm{1}} } \:−\:\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mathrm{n}_{\mathrm{c}_{\mathrm{2}} } \:+\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}\right)\mathrm{n}_{\mathrm{c}_{\mathrm{3}} } \\ $$$$+.......+\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+....+\frac{\mathrm{1}}{\mathrm{n}}\right)\mathrm{n}_{\mathrm{c}_{\mathrm{n}} } \\ $$$$\mathrm{then}\:\mathrm{prove}\:\mathrm{that}\:\mathrm{s}×\mathrm{n}\:=\mathrm{1}. \\ $$

Question Number 29167    Answers: 0   Comments: 1

let give S_n = Σ_(k=1) ^(n−1) sin(((kπ)/n)) find lim_(n→+∞) (S_n /n) .

$${let}\:{give}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}−\mathrm{1}} {sin}\left(\frac{{k}\pi}{{n}}\right)\:\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:\frac{{S}_{{n}} }{{n}}\:\:. \\ $$

Question Number 29166    Answers: 0   Comments: 1

simlify S_n = Σ_(k=1) ^n k(1+i)^(k−1) .

$${simlify}\:{S}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\left(\mathrm{1}+{i}\right)^{{k}−\mathrm{1}} \:\:\:\:. \\ $$

Question Number 29165    Answers: 0   Comments: 1

give the factorization inside C[x] for p(x)= x^4 −((1−i(√3))/2) .

$${give}\:{the}\:{factorization}\:{inside}\:{C}\left[{x}\right]\:{for} \\ $$$${p}\left({x}\right)=\:\:{x}^{\mathrm{4}} \:−\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:. \\ $$

Question Number 29164    Answers: 0   Comments: 1

let put α= 1+i(√3) simlify A_n = Σ_(k=0) ^n α^k .

$${let}\:{put}\:\alpha=\:\mathrm{1}+{i}\sqrt{\mathrm{3}}\:\:\:\:\:{simlify} \\ $$$${A}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\alpha^{{k}} \:\:\:. \\ $$

Question Number 29138    Answers: 0   Comments: 4

Find number of polynomials p(x) with intgral coefficients such that p(1)=2, p(3)=1

$${Find}\:{number}\:{of}\:{polynomials}\:{p}\left({x}\right) \\ $$$${with}\:{intgral}\:{coefficients}\:{such}\:{that} \\ $$$${p}\left(\mathrm{1}\right)=\mathrm{2},\:{p}\left(\mathrm{3}\right)=\mathrm{1} \\ $$

Question Number 29123    Answers: 0   Comments: 0

Question Number 29049    Answers: 1   Comments: 0

Prove that e^(iπ) +1=0

$${Prove}\:{that} \\ $$$$\:\:\:\:\:{e}^{{i}\pi} +\mathrm{1}=\mathrm{0} \\ $$

Question Number 28921    Answers: 1   Comments: 0

Question Number 28857    Answers: 1   Comments: 0

Question Number 28856    Answers: 0   Comments: 0

Question Number 28739    Answers: 1   Comments: 0

if S_n =((a(r^n −1))/(r−1)) make r the subject of formula

$${if}\:{S}_{{n}} =\frac{{a}\left({r}^{{n}} −\mathrm{1}\right)}{{r}−\mathrm{1}}\: \\ $$$$ \\ $$$${make}\:{r}\:{the}\:{subject}\:{of}\:{formula} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Question Number 28642    Answers: 0   Comments: 0

f(x)=4x−1for0<x<4 find f(0) ,f(1) f(1.2),f(4),f(−1)

$${f}\left({x}\right)=\mathrm{4}{x}−\mathrm{1}{for}\mathrm{0}<{x}<\mathrm{4}\:{find}\:{f}\left(\mathrm{0}\right)\:,{f}\left(\mathrm{1}\right) \\ $$$${f}\left(\mathrm{1}.\mathrm{2}\right),{f}\left(\mathrm{4}\right),{f}\left(−\mathrm{1}\right) \\ $$

Question Number 28554    Answers: 2   Comments: 0

(((a − b))/((c − d))) = 3 (((a − c))/((b − d))) = 4 (((a − d))/((b − c))) = ?

$$\frac{\left({a}\:−\:{b}\right)}{\left({c}\:−\:{d}\right)}\:\:=\:\:\mathrm{3} \\ $$$$\frac{\left({a}\:−\:{c}\right)}{\left({b}\:−\:{d}\right)}\:\:=\:\:\mathrm{4} \\ $$$$\frac{\left({a}\:−\:{d}\right)}{\left({b}\:−\:{c}\right)}\:\:=\:\:? \\ $$$$ \\ $$

Question Number 28546    Answers: 0   Comments: 0

let give w=e^(i((2π)/n)) and S= Σ_(k=0) ^(n−1) w^k^2 1) prove that S= Σ_(k=0) ^(n−1) w^((q+k)^2 ) 2) find ∣S∣.

$${let}\:{give}\:{w}={e}^{{i}\frac{\mathrm{2}\pi}{{n}}} \:\:\:{and}\:\:{S}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{w}^{{k}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\:\:{S}=\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\:{w}^{\left({q}+{k}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:\mid{S}\mid. \\ $$

Question Number 28544    Answers: 0   Comments: 2

if a_1 ,a_2 ,...a_(14 ) are roots of the polynomial p(x)=x^(14) +x^8 2x+1 calculate Σ_(i=1) ^(14) (1/((a_i −1)^2 )) .

$${if}\:\:{a}_{\mathrm{1}} \:,{a}_{\mathrm{2}} ,...{a}_{\mathrm{14}\:} {are}\:{roots}\:{of}\:{the}\:{polynomial} \\ $$$${p}\left({x}\right)={x}^{\mathrm{14}} +{x}^{\mathrm{8}} \:\mathrm{2}{x}+\mathrm{1}\:\:\:{calculate}\:\:\sum_{{i}=\mathrm{1}} ^{\mathrm{14}} \:\:\frac{\mathrm{1}}{\left({a}_{{i}} −\mathrm{1}\right)^{\mathrm{2}} }\:\:. \\ $$

Question Number 28534    Answers: 0   Comments: 1

find n from N in ordre tohave x^2 +x+1 divide (x+1)^n −x^n −1.

$${find}\:{n}\:{from}\:{N}\:\:{in}\:{ordre}\:{tohave}\:{x}^{\mathrm{2}} +{x}+\mathrm{1}\:{divide} \\ $$$$\left({x}+\mathrm{1}\right)^{{n}} −{x}^{{n}} −\mathrm{1}. \\ $$

Question Number 28533    Answers: 0   Comments: 1

let give the matrice A= (((1 2 )),((2 1)) ) calculate A^n then find e^A .

$${let}\:{give}\:{the}\:{matrice}\:\:{A}=\:\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\mathrm{2}\:\:\:}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$${calculate}\:\:{A}^{{n}} \:\:{then}\:{find}\:\:{e}^{{A}} \:. \\ $$

  Pg 340      Pg 341      Pg 342      Pg 343      Pg 344      Pg 345      Pg 346      Pg 347      Pg 348      Pg 349   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com