Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 34
Question Number 210034 Answers: 1 Comments: 4
Question Number 210011 Answers: 0 Comments: 0
$$\mathrm{Find}:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\:\frac{\mathrm{ln}\:\left(\mathrm{cos}\:\left(\frac{\pi\mathrm{x}}{\mathrm{2}}\right)\right)}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{x}}\:\mathrm{dx}\:\:=\:\:? \\ $$
Question Number 209986 Answers: 1 Comments: 0
$$\mathrm{Solve}\: \\ $$$$\:\boldsymbol{\mathrm{ax}}^{\mathrm{3}} −\boldsymbol{\mathrm{bx}}\sqrt{\boldsymbol{\mathrm{x}}}\:+\boldsymbol{\mathrm{c}}=\mathrm{0}\:\:\:\:\: \\ $$$$\:\left(\boldsymbol{\mathrm{a}},\:\boldsymbol{\mathrm{b}},\:\boldsymbol{\mathrm{c}}\right)\in\mathbb{R}^{\mathrm{3}} \:\:\:\:\mathrm{and}\:\boldsymbol{\mathrm{x}}\in\mathbb{R} \\ $$$$\left(\boldsymbol{{the}}\:\boldsymbol{{value}}\:\boldsymbol{{of}}\:\boldsymbol{{x}}\:\boldsymbol{{for}}\:\boldsymbol{{a}}=\mathrm{1},\:\:\boldsymbol{{b}}=\mathrm{9},\boldsymbol{{c}}=\mathrm{8}\right) \\ $$
Question Number 209980 Answers: 0 Comments: 7
$$\mathrm{determiner}\:\mathrm{h}\:? \\ $$$$\boldsymbol{\mathrm{CD}}=\mathrm{20}\:\:\:\:\boldsymbol{\mathrm{AB}}=\mathrm{30} \\ $$$$\boldsymbol{\mathrm{h}}\mathrm{1}=\mathrm{25} \\ $$$$ \\ $$
Question Number 209976 Answers: 0 Comments: 1
Question Number 209974 Answers: 0 Comments: 0
Question Number 209972 Answers: 1 Comments: 0
Question Number 209929 Answers: 0 Comments: 0
Question Number 209918 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \:\frac{\left\{\mathrm{x}\right\}^{\left[\boldsymbol{\mathrm{x}}\right]} }{\left[\mathrm{x}\right]\:+\:\mathrm{1}}\:\mathrm{dx}\:=\:? \\ $$$$\left\{\mathrm{x}\right\}\:\rightarrow\:\mathrm{fractional}\:\mathrm{part} \\ $$$$\left[\mathrm{x}\right]\:\:\:\rightarrow\:\mathrm{full}\:\mathrm{part} \\ $$
Question Number 209876 Answers: 1 Comments: 0
$$\mathrm{1},\mathrm{6}\:\:=\:\:\frac{\left(\mathrm{2x}\right)^{\mathrm{2}} }{\left(\mathrm{3}−\mathrm{2x}\right)^{\mathrm{2}} \:\centerdot\:\left(\mathrm{2}−\mathrm{x}\right)}\:\:\:\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Question Number 209872 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:{x}\in\mathbb{R}: \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{2}=\sqrt{{x}+\mathrm{1}} \\ $$
Question Number 209852 Answers: 1 Comments: 0
$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{arctan}\:\left(\frac{\mathrm{2}}{\mathrm{n}^{\mathrm{2}} }\right)\:=\:? \\ $$
Question Number 209837 Answers: 2 Comments: 0
$$ \\ $$$${if}\:{the}\:{series}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:{converges}\:{to}\:{k}\:.\:\:{find}\:\:{the}\:{convergence}\:{value}\:{of}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Question Number 209812 Answers: 0 Comments: 0
Question Number 209768 Answers: 1 Comments: 0
$$\boldsymbol{{Express}}\:\boldsymbol{{tan}}\left(\mathrm{3}\right)\:\boldsymbol{{in}}\:\boldsymbol{{surd}}\:\boldsymbol{{form}} \\ $$
Question Number 209735 Answers: 3 Comments: 0
$$\mathrm{tan}\left(\mathrm{3x}\right)\:\:+\:\:\mathrm{tan}\left(\mathrm{5x}\right)\:\:=\:\:\mathrm{2} \\ $$$$\mathrm{Find}:\:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Question Number 209719 Answers: 1 Comments: 0
$$\mathrm{If}: \\ $$$$\mathrm{7}^{\mathrm{243}} \:\:=\:\:\overline {\mathrm{a}...\mathrm{bc}} \\ $$$$\mathrm{Find}: \\ $$$$\mathrm{b}\centerdot\mathrm{c}\:=\:? \\ $$
Question Number 209706 Answers: 2 Comments: 0
$${find}\:{the}\:{sum}\:{of}\: \\ $$$$\mathrm{sin}^{\mathrm{2}} \:\mathrm{1}°+\mathrm{sin}^{\mathrm{2}} \:\mathrm{2}°+...+\mathrm{sin}^{\mathrm{2}} \:\mathrm{60}°=? \\ $$
Question Number 209695 Answers: 1 Comments: 0
$$\mathrm{If}: \\ $$$$\left(\mathrm{a}\:+\:\mathrm{b}\right)\centerdot\sqrt{\mathrm{2}}\:=\:\mathrm{7}\centerdot\left(\mathrm{a}−\mathrm{b}−\mathrm{4}\right) \\ $$$$\mathrm{Find}: \\ $$$$\left(\mathrm{2a}\:+\:\mathrm{b}\right)\:=\:? \\ $$
Question Number 209694 Answers: 1 Comments: 0
$${x}^{\mathrm{2}} +{xy}+{y}^{\mathrm{2}} =\alpha^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} +{yz}+{z}^{\mathrm{2}} =\beta^{\mathrm{2}} \\ $$$${z}^{\mathrm{2}} +{zx}+{x}^{\mathrm{2}} =\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \\ $$$$\mathrm{Find}\:{x}+{y}+{z}\:\mathrm{for}\:{x},\:{y},\:{z}\:\in\mathbb{R}^{+} \\ $$
Question Number 209633 Answers: 2 Comments: 0
Question Number 209580 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} >\mathrm{0}\:\:\:\mathrm{and}\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:=\:\mathrm{0} \\ $$$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{n}}\:\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\mathrm{ln}\:\left(\frac{\mathrm{k}}{\mathrm{n}}\:+\:\mathrm{a}_{\boldsymbol{\mathrm{n}}} \right)\:=\:? \\ $$
Question Number 209542 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int\frac{{dx}}{{x}^{\mathrm{15}} −{x}^{\mathrm{11}} } \\ $$$$ \\ $$$$ \\ $$
Question Number 209539 Answers: 0 Comments: 0
Question Number 209531 Answers: 0 Comments: 1
$$\frac{\mathrm{y}^{''} }{\mathrm{y}}\:\:=\:\:\mathrm{4x}^{\mathrm{2}} \:\:+\:\:\mathrm{2} \\ $$
Question Number 209514 Answers: 1 Comments: 0
$$\mathrm{If}\:\Sigma\:{a}_{{n}} \:\mathrm{is}\:\mathrm{absolutely}\:\mathrm{convergent},\:\mathrm{prove}\:\mathrm{that} \\ $$$$\Sigma\:\frac{{a}_{{n}} }{{n}}\:\mathrm{is}\:\mathrm{also}\:\mathrm{absolutely}\:\mathrm{convergent}. \\ $$
Pg 29 Pg 30 Pg 31 Pg 32 Pg 33 Pg 34 Pg 35 Pg 36 Pg 37 Pg 38
Terms of Service
Privacy Policy
Contact: info@tinkutara.com