Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 336

Question Number 34215    Answers: 0   Comments: 0

find the polynome p_n wich verify p_n (0)=0 and ∀ x ∈ R p_n (x)−p_n (x−1) =x^n

$${find}\:{the}\:{polynome}\:{p}_{{n}} \:{wich}\:{verify}\:{p}_{{n}} \left(\mathrm{0}\right)=\mathrm{0}\:{and} \\ $$$$\forall\:{x}\:\in\:{R}\:\:{p}_{{n}} \left({x}\right)−{p}_{{n}} \left({x}−\mathrm{1}\right)\:={x}^{{n}} \\ $$

Question Number 34211    Answers: 1   Comments: 0

let x and y such that 2x^2 +4x−2y=0 y^2 −(x+6)^2 =0 find the possibles value of x+y

$${let}\:{x}\:{and}\:{y}\:{such}\:{that} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{4}{x}−\mathrm{2}{y}=\mathrm{0} \\ $$$${y}^{\mathrm{2}} −\left({x}+\mathrm{6}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$${find}\:{the}\:{possibles}\:{value}\:{of}\:{x}+{y} \\ $$

Question Number 34182    Answers: 2   Comments: 0

resolve (x^3 /(x^6 −1)) into partial fraction

$${resolve}\:\frac{{x}^{\mathrm{3}} }{{x}^{\mathrm{6}} −\mathrm{1}}\:{into}\:{partial}\:{fraction} \\ $$

Question Number 34139    Answers: 2   Comments: 0

What is the remainder when 17^(200) is divided by 18

$${What}\:{is}\:{the}\:{remainder}\:{when} \\ $$$$\mathrm{17}^{\mathrm{200}} \:{is}\:{divided}\:{by}\:\mathrm{18} \\ $$

Question Number 34081    Answers: 1   Comments: 0

2^n −2^(n−1) =4 .find n^(n.)

$$\mathrm{2}^{{n}} −\mathrm{2}^{{n}−\mathrm{1}} =\mathrm{4}\:.{find}\:{n}^{{n}.} \\ $$

Question Number 34056    Answers: 2   Comments: 3

x^(3z) =1 x^2 =y z=y^n FIND THE VALUE OF n please i need your help ASAP. thanks

$${x}^{\mathrm{3}{z}} =\mathrm{1}\: \\ $$$${x}^{\mathrm{2}} ={y} \\ $$$${z}={y}^{{n}} \\ $$$${FIND}\:{THE}\:{VALUE}\:{OF}\:{n} \\ $$$${please}\:{i}\:{need}\:{your}\:{help}\:{ASAP}.\:{thanks} \\ $$

Question Number 34044    Answers: 2   Comments: 2

what is the remainder when (111..)+(222..)+(333..)+....+(77..) is divided by 37

$${what}\:{is}\:{the}\:{remainder}\:{when}\: \\ $$$$\left(\mathrm{111}..\right)+\left(\mathrm{222}..\right)+\left(\mathrm{333}..\right)+....+\left(\mathrm{77}..\right) \\ $$$${is}\:{divided}\:{by}\:\mathrm{37} \\ $$

Question Number 34020    Answers: 0   Comments: 1

let p(x)=cos(2n arccos(x)) with x∈[−1,1] find the roots of p(x) and factorize p(x)

$${let}\:{p}\left({x}\right)={cos}\left(\mathrm{2}{n}\:{arccos}\left({x}\right)\right)\:\:{with}\:{x}\in\left[−\mathrm{1},\mathrm{1}\right] \\ $$$${find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right)\:{and}\:{factorize}\:\:{p}\left({x}\right) \\ $$

Question Number 34019    Answers: 0   Comments: 4

n integr decompose imsidr R[x] the fraction F(x) = (1/((x^2 −1)^n ))

$${n}\:{integr}\:{decompose}\:{imsidr}\:{R}\left[{x}\right]\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\:\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:−\mathrm{1}\right)^{{n}} } \\ $$

Question Number 33988    Answers: 1   Comments: 0

give the algebric form of (1+i)^i .

$${give}\:{the}\:{algebric}\:{form}\:{of}\:\left(\mathrm{1}+{i}\right)^{{i}} . \\ $$

Question Number 33982    Answers: 0   Comments: 0

decompose inside R[x] the fraction F(x) = (1/(x^n (x+1)^2 )) with n integr .

$${decompose}\:{inside}\:{R}\left[{x}\right]\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\frac{\mathrm{1}}{{x}^{{n}} \left({x}+\mathrm{1}\right)^{\mathrm{2}} }\:{with}\:{n}\:{integr}\:. \\ $$

Question Number 33880    Answers: 1   Comments: 1

Question Number 33843    Answers: 0   Comments: 2

decompose inside R(x) the fraction F(x)= (1/((x+3)^n (x+1))) with n integr .

$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left({x}+\mathrm{3}\right)^{{n}} \:\left({x}+\mathrm{1}\right)}\:{with}\:{n}\:{integr}\:. \\ $$

Question Number 33838    Answers: 1   Comments: 0

Find the values of k if ((x^2 +3x−4)/(5x−k)) may be capable of taking on all values when x is real.

$${Find}\:{the}\:{values}\:{of}\:{k}\:{if}\:\frac{{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{4}}{\mathrm{5}{x}−{k}}\: \\ $$$${may}\:{be}\:{capable}\:{of}\:{taking}\:{on}\:{all} \\ $$$${values}\:{when}\:{x}\:{is}\:{real}. \\ $$

Question Number 33837    Answers: 2   Comments: 0

find y if ∣((y−3)/(y+1))∣<2 i mean modulus by ∣

$${find}\:{y}\:{if}\:\mid\frac{{y}−\mathrm{3}}{{y}+\mathrm{1}}\mid<\mathrm{2} \\ $$$$ \\ $$$${i}\:{mean}\:{modulus}\:{by}\:\mid \\ $$

Question Number 33836    Answers: 2   Comments: 0

for what values of x if ((x(x−1))/(2x+3))>0

$${for}\:{what}\:{values}\:{of}\:{x}\:{if} \\ $$$$\frac{{x}\left({x}−\mathrm{1}\right)}{\mathrm{2}{x}+\mathrm{3}}>\mathrm{0} \\ $$

Question Number 33834    Answers: 0   Comments: 0

P(x)=x^n +a_(n−1) x^(n−1) +.... a_1 x+a_0 be a polynomial with all the real roots, prove that (n−1)a_(n−1) ^2 ≥ 2na_(n−2) .

$${P}\left({x}\right)={x}^{{n}} +{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} +....\:{a}_{\mathrm{1}} {x}+{a}_{\mathrm{0}} \:\:\:{be}\:{a}\:{polynomial}\:{with}\:{all}\:{the}\:{real}\:{roots}, \\ $$$${prove}\:{that}\:\:\:\:\:\:\:\:\:\left({n}−\mathrm{1}\right){a}_{{n}−\mathrm{1}} ^{\mathrm{2}} \:\geqslant\:\mathrm{2}{na}_{{n}−\mathrm{2}} \:\:. \\ $$

Question Number 33876    Answers: 0   Comments: 2

how can i write out 6 to thethird power divided by 2 to the fourth power pleasr help me write out this equation

$${how}\:{can}\:{i}\:{write}\:{out}\:\mathrm{6}\:{to}\:{thethird}\:{power}\:{divided}\:{by}\:\mathrm{2}\:{to}\:{the}\:{fourth}\:{power}\:{pleasr}\:{help}\:{me}\:{write}\:{out}\:{this}\:{equation}\: \\ $$

Question Number 33805    Answers: 1   Comments: 0

The perimeter of a square and a rectangle is the same. The width of the rectangle is 6 cm and its area is 16 cm^2 less than the area of the square. Find the area of the square.

$$\mathrm{The}\:\mathrm{perimeter}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:\mathrm{and}\:\mathrm{a}\:\mathrm{rectangle}\:\mathrm{is}\:\mathrm{the} \\ $$$$\mathrm{same}.\:\mathrm{The}\:\mathrm{width}\:\mathrm{of}\:\mathrm{the}\:\mathrm{rectangle}\:\mathrm{is}\:\mathrm{6}\:\mathrm{cm}\:\mathrm{and}\:\mathrm{its}\:\mathrm{area} \\ $$$$\mathrm{is}\:\mathrm{16}\:\mathrm{cm}^{\mathrm{2}} \:\mathrm{less}\:\mathrm{than}\:\mathrm{the}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}. \\ $$

Question Number 33783    Answers: 1   Comments: 0

Two commodities X and Y cost $70.00 and $80.00 per kg respectively. If 34.5 kg of X is mixed with 26kg of Y and the mixture is sold at $85.00 per kg, calculate the percentage profit.

$$\mathrm{Two}\:\mathrm{commodities}\:\mathrm{X}\:\mathrm{and}\:\mathrm{Y}\:\mathrm{cost}\:\$\mathrm{70}.\mathrm{00}\:\mathrm{and}\:\$\mathrm{80}.\mathrm{00} \\ $$$$\mathrm{per}\:\mathrm{kg}\:\mathrm{respectively}.\:\mathrm{If}\:\mathrm{34}.\mathrm{5}\:\mathrm{kg}\:\mathrm{of}\:\mathrm{X}\:\mathrm{is}\:\mathrm{mixed}\:\mathrm{with}\: \\ $$$$\mathrm{26kg}\:\mathrm{of}\:\mathrm{Y}\:\mathrm{and}\:\mathrm{the}\:\mathrm{mixture}\:\mathrm{is}\:\mathrm{sold}\:\mathrm{at}\:\$\mathrm{85}.\mathrm{00}\:\mathrm{per}\:\mathrm{kg}, \\ $$$$\mathrm{calculate}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{profit}. \\ $$

Question Number 33743    Answers: 0   Comments: 1

let p(x)=(1+x^2 )(1+x^4 )....(1+x^2^n ) with n integr 1) find the roots of p(x) 2) factorize p(x) inside C[x]

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{x}^{\mathrm{4}} \right)....\left(\mathrm{1}+{x}^{\mathrm{2}^{{n}} } \right)\:{with}\:{n}\:{integr} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$

Question Number 33702    Answers: 0   Comments: 1

let p(x) =a_0 +a_1 x +a_2 x^2 +...a_n x^n prove that a_k = ((p^((k)) (0))/(k!)) ∀ k ∈[[0,n]] .

$${let}\:{p}\left({x}\right)\:={a}_{\mathrm{0}} \:+{a}_{\mathrm{1}} {x}\:+{a}_{\mathrm{2}} {x}^{\mathrm{2}} \:+...{a}_{{n}} {x}^{{n}} \\ $$$${prove}\:{that}\:\:{a}_{{k}} =\:\frac{{p}^{\left({k}\right)} \left(\mathrm{0}\right)}{{k}!}\:\:\forall\:{k}\:\in\left[\left[\mathrm{0},{n}\right]\right]\:. \\ $$

Question Number 33569    Answers: 1   Comments: 0

Given f(x) = x^3 + ax^2 + bx + c with a, b, c ∈ R, the roots are x_1 , x_2 , x_3 ∈ R Let λ is an positive integer that satisfied x_2 − x_1 = λ x_3 > (1/2)(x_1 + x_2 ) What is the max value of ((2a^3 + 27c − 9ab)/λ^3 ) ?

$$\mathrm{Given}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c} \\ $$$$\mathrm{with}\:{a},\:{b},\:{c}\:\in\:\mathbb{R},\:\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} \:\in\:\mathbb{R} \\ $$$$\mathrm{Let}\:\lambda\:\mathrm{is}\:\mathrm{an}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{that}\:\mathrm{satisfied} \\ $$$${x}_{\mathrm{2}} \:−\:{x}_{\mathrm{1}} \:=\:\lambda \\ $$$${x}_{\mathrm{3}} \:>\:\frac{\mathrm{1}}{\mathrm{2}}\left({x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \right) \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{max}\:\mathrm{value}\:\mathrm{of}\:\:\frac{\mathrm{2}{a}^{\mathrm{3}} \:+\:\mathrm{27}{c}\:−\:\mathrm{9}{ab}}{\lambda^{\mathrm{3}} }\:? \\ $$

Question Number 33518    Answers: 0   Comments: 0

α^4 +β^(4 ) solve please

$$\alpha^{\mathrm{4}} +\beta^{\mathrm{4}\:} {solve}\:{please} \\ $$

Question Number 33515    Answers: 0   Comments: 1

expand α^4 +β^(β ) please

$${expand}\:\alpha^{\mathrm{4}} +\beta^{\beta\:\:} {please} \\ $$

Question Number 33496    Answers: 1   Comments: 0

prove that e^(iπ) +1=0

$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{e}^{\mathrm{i}\pi} +\mathrm{1}=\mathrm{0} \\ $$

  Pg 331      Pg 332      Pg 333      Pg 334      Pg 335      Pg 336      Pg 337      Pg 338      Pg 339      Pg 340   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com