Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 336

Question Number 35153    Answers: 1   Comments: 0

Question Number 35152    Answers: 0   Comments: 2

Question Number 35080    Answers: 2   Comments: 0

If (a/(b+c)) +(b/(c+a)) +(c/(a+b))=1 then prove that (a^2 /(b+c)) +(b^2 /(c+a)) +(c^2 /(a+b))=0

$${If}\:\frac{{a}}{{b}+{c}}\:+\frac{{b}}{{c}+{a}}\:+\frac{{c}}{{a}+{b}}=\mathrm{1}\:{then}\:{prove}\:{that} \\ $$$$\frac{{a}^{\mathrm{2}} }{{b}+{c}}\:+\frac{{b}^{\mathrm{2}} }{{c}+{a}}\:+\frac{{c}^{\mathrm{2}} }{{a}+{b}}=\mathrm{0} \\ $$

Question Number 35056    Answers: 0   Comments: 2

let p(x)=(1+jx)^n −(1−jx)^n 1) find the roots of p(x) 2)factorize p(x) inside C[x] j =e^(i((2π)/3)) .

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{jx}\right)^{{n}} \:−\left(\mathrm{1}−{jx}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$${j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:. \\ $$

Question Number 34870    Answers: 3   Comments: 4

Question Number 34760    Answers: 2   Comments: 0

Question Number 34739    Answers: 3   Comments: 3

Question Number 34738    Answers: 0   Comments: 2

Question Number 34686    Answers: 0   Comments: 0

decompose F(x) = (((2n)!)/((x^2 −1)(x^2 −2)....(x^2 −n)))

$${decompose}\:{F}\left({x}\right)\:\:=\:\frac{\left(\mathrm{2}{n}\right)!}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)\left({x}^{\mathrm{2}} \:−\mathrm{2}\right)....\left({x}^{\mathrm{2}} \:−{n}\right)} \\ $$

Question Number 34685    Answers: 0   Comments: 0

decompose the fraction F(x)= (1/((x+2)( x^n −1))) with n ∈ N^★

$${decompose}\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\frac{\mathrm{1}}{\left({x}+\mathrm{2}\right)\left(\:{x}^{{n}} \:\:−\mathrm{1}\right)}\:\:{with}\:{n}\:\in\:{N}^{\bigstar} \\ $$

Question Number 34680    Answers: 0   Comments: 0

decompose inside C(x) the fraction F(x) = (x^2 /(x^4 −2x^2 cos(2a) +1)) .

$${decompose}\:{inside}\:{C}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\:\:\:\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} {cos}\left(\mathrm{2}{a}\right)\:+\mathrm{1}}\:. \\ $$

Question Number 34673    Answers: 0   Comments: 0

solve (((1+iz)/(1−iz)))^n = ((1+itanα)/(1−itanα)) with −(π/2)<α<(π/2)

$${solve}\:\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right)^{{n}} \:=\:\frac{\mathrm{1}+{itan}\alpha}{\mathrm{1}−{itan}\alpha}\:\:{with}\:−\frac{\pi}{\mathrm{2}}<\alpha<\frac{\pi}{\mathrm{2}} \\ $$

Question Number 34669    Answers: 0   Comments: 1

let P(x)=(1+x+ix^2 )^n −(1+x −ix^2 )^n 1) find the roots of P(x) 2) factorize inside C[x] P(x) 3) factorize indide R[x] P(x).

$${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{x}+{ix}^{\mathrm{2}} \right)^{{n}} \:−\left(\mathrm{1}+{x}\:−{ix}^{\mathrm{2}} \right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{inside}\:{C}\left[{x}\right]\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{indide}\:{R}\left[{x}\right]\:{P}\left({x}\right). \\ $$

Question Number 34668    Answers: 0   Comments: 0

find the roots of?p(x) = x^(2n) −2x^n cos(nθ) +1 2)?factorize p(x)

$${find}\:{the}\:{roots}\:{of}?{p}\left({x}\right)\:=\:{x}^{\mathrm{2}{n}} \:−\mathrm{2}{x}^{{n}} \:{cos}\left({n}\theta\right)\:+\mathrm{1} \\ $$$$\left.\mathrm{2}\right)?{factorize}\:{p}\left({x}\right)\: \\ $$

Question Number 34667    Answers: 0   Comments: 0

solve (x+1)^n = e^(2ina) then find the value of P_n = Π_(k=0) ^(n−1) sin(a +((kπ)/n))

$${solve}\:\:\left({x}+\mathrm{1}\right)^{{n}} \:=\:{e}^{\mathrm{2}{ina}} \:\:\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$${P}_{{n}} =\:\prod_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{sin}\left({a}\:+\frac{{k}\pi}{{n}}\right) \\ $$

Question Number 34653    Answers: 0   Comments: 0

Question Number 34615    Answers: 0   Comments: 0

decompose inside R(x) the fraction F(x)= (x^2 /((x+1)^5 ( x+3)^8 ))

$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\:\:\frac{{x}^{\mathrm{2}} }{\left({x}+\mathrm{1}\right)^{\mathrm{5}} \left(\:{x}+\mathrm{3}\right)^{\mathrm{8}} } \\ $$

Question Number 34607    Answers: 0   Comments: 0

let p∈C[x] degp=n (x_i )_(1≤k≤n) the roots of p(x) a∈C?/p(a)≠0 1) calculate S_1 = Σ_(k=1) ^n (1/(x_k −a)) interms of p,p^′ and a 2)calculste S_2 =Σ_(k=1) ^n (1/((x_k −a)^2 )) interms of p,p^, p^(′′) and a.

$${let}\:{p}\in{C}\left[{x}\right]\:{degp}={n}\:\:\:\left({x}_{{i}} \right)_{\mathrm{1}\leqslant{k}\leqslant{n}} {the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$${a}\in{C}?/{p}\left({a}\right)\neq\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{S}_{\mathrm{1}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{x}_{{k}} −{a}}\:{interms}\:{of}\:{p},{p}^{'} \:{and}\:{a} \\ $$$$\left.\mathrm{2}\right){calculste}\:{S}_{\mathrm{2}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\left({x}_{{k}} −{a}\right)^{\mathrm{2}} }\:\:{interms}\:{of}\:{p},{p}^{,} \\ $$$${p}^{''} \:{and}\:{a}. \\ $$

Question Number 34606    Answers: 0   Comments: 0

let give p(x)=(x+1)^n −(x−1)^n 1) factorize p(x) inside C[x] 2) find the value of Π_(k=1) ^p cotan(((kπ)/(2p+1)))

$${let}\:{give}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} \:−\left({x}−\mathrm{1}\right)^{{n}} \\ $$$$\left.\mathrm{1}\right)\:{factorize}\:{p}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\prod_{{k}=\mathrm{1}} ^{{p}} \:\:{cotan}\left(\frac{{k}\pi}{\mathrm{2}{p}+\mathrm{1}}\right) \\ $$

Question Number 34604    Answers: 0   Comments: 0

let p(x)= x^n +x+1 ∈C[x] and z∈C/p(z)=0 prove that ∣z∣<2 .

$${let}\:\:{p}\left({x}\right)=\:{x}^{{n}} \:+{x}+\mathrm{1}\:\in{C}\left[{x}\right]\:{and}\:{z}\in{C}/{p}\left({z}\right)=\mathrm{0} \\ $$$${prove}\:{that}\:\mid{z}\mid<\mathrm{2}\:. \\ $$

Question Number 34603    Answers: 0   Comments: 0

prove that ∀ p∈K[x] p(x) −x divide p(p(x))−x

$${prove}\:{that}\:\forall\:{p}\in{K}\left[{x}\right]\:{p}\left({x}\right)\:−{x}\:{divide}\:{p}\left({p}\left({x}\right)\right)−{x} \\ $$

Question Number 34602    Answers: 0   Comments: 0

simplify Σ_(k=0) ^n ((k/n) −α)^2 C_n ^k x^k (1−x)^(n−k ) α∈C.

$${simplify}\:\sum_{{k}=\mathrm{0}} ^{{n}} \left(\frac{{k}}{{n}}\:−\alpha\right)^{\mathrm{2}} {C}_{{n}} ^{{k}} \:{x}^{{k}} \left(\mathrm{1}−{x}\right)^{{n}−{k}\:} \\ $$$$\alpha\in{C}. \\ $$

Question Number 34595    Answers: 0   Comments: 0

simplify Σ_(k=1) ^n (((−1)^(k−1) )/k) C_n ^k

$${simplify}\:\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}−\mathrm{1}} }{{k}}\:{C}_{{n}} ^{{k}} \\ $$

Question Number 34614    Answers: 0   Comments: 1

decompose inside R(x) the fraction F(x)= (1/((x−3)^6 (x+2))) .

$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)=\:\frac{\mathrm{1}}{\left({x}−\mathrm{3}\right)^{\mathrm{6}} \left({x}+\mathrm{2}\right)}\:. \\ $$

Question Number 34533    Answers: 2   Comments: 5

Solve for x : 5 log_4 x + 48 log_x 4 = (x/8)

$$\mathrm{Solve}\:\mathrm{for}\:\:\mathrm{x}\::\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{5}\:\mathrm{log}_{\mathrm{4}} \mathrm{x}\:\:\:+\:\:\:\mathrm{48}\:\mathrm{log}_{\mathrm{x}} \mathrm{4}\:\:\:\:=\:\:\:\:\frac{\mathrm{x}}{\mathrm{8}} \\ $$

Question Number 34429    Answers: 2   Comments: 0

Prove that 3^m +3^n +1 is not a perfect square. where m and n are positive integers.

$${Prove}\:{that} \\ $$$$\mathrm{3}^{{m}} +\mathrm{3}^{{n}} +\mathrm{1}\:{is}\:{not}\:{a}\:{perfect}\:{square}. \\ $$$${where}\:{m}\:{and}\:{n}\:{are}\:{positive}\:{integers}. \\ $$

  Pg 331      Pg 332      Pg 333      Pg 334      Pg 335      Pg 336      Pg 337      Pg 338      Pg 339      Pg 340   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com