If z=cosθ+isinθ is a root of equation
a_0 z^n +a_1 z^(n−1) +a_2 z^(n−2) +.....+a_(n−1) z+a_n =0
then prove that:
i) a_0 +a_1 cos θ+a_2 cos 2θ+.....+a_n cos nθ=0
ii) a_1 sin θ + a_2 sin 2θ+....+a_n sin nθ=0.
Let a>b>1 be positive integers with b odd.
Let n be a positive integer as well. If b^n divides
a^n −1, prove that a^b > (3^n /n).
Solution please. Thanks in advance!!