Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 327
Question Number 44765 Answers: 0 Comments: 0
Question Number 44763 Answers: 1 Comments: 1
Question Number 44729 Answers: 4 Comments: 0
Question Number 44691 Answers: 1 Comments: 1
Question Number 44570 Answers: 1 Comments: 0
Question Number 44543 Answers: 1 Comments: 3
$${If}\:\:{y}\:={f}\left({x}\right)\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${and}\:\:{at}\:{some}\:{x},\:{say}\:\:{x}=\:{p} \\ $$$$\int_{\mathrm{0}} ^{\:\:{p}} {ydx}\:=\:{y}\left({p}\right)=\:{y}\:'\left({p}\right)\:=\:{y}\:''\left({p}\right)=\:{p}\:, \\ $$$${then}\:{find}\:\boldsymbol{{p}}\:. \\ $$
Question Number 44502 Answers: 1 Comments: 0
$$\mathrm{If}\:\mathrm{a}>\mathrm{b},\mathrm{and}\:\mathrm{c}>\mathrm{d},\mathrm{prove}\:\mathrm{that}\:\mathrm{a}−\mathrm{c}\:\mathrm{may}\:\mathrm{be}\:\mathrm{greater}\:\mathrm{than}, \\ $$$$\mathrm{equal}\:\mathrm{to}\:\mathrm{or}\:\mathrm{less}\:\mathrm{than}\:\mathrm{b}−\mathrm{d}. \\ $$$$ \\ $$
Question Number 44444 Answers: 1 Comments: 0
$${simplify}\:\:\:\:\sqrt{\left(\mathrm{4}{x}^{\mathrm{2}} {y}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} +\left(\mathrm{8}{x}^{\mathrm{2}} {y}^{\mathrm{2}} \right)^{\mathrm{4}} } \\ $$
Question Number 44397 Answers: 2 Comments: 4
$${If}\:{x}\:{is}\:{nearly}\:{equal}\:{to}\:\mathrm{1}\:{then} \\ $$$$\frac{{mx}^{{m}} −{nx}^{{n}} }{{m}−{n}}= \\ $$
Question Number 44384 Answers: 2 Comments: 6
$$\mathrm{Let}\:{a}\:\mathrm{and}\:{b}\:\mathrm{are}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that} \\ $$$${a}\:>\:{b}\:>\:\mathrm{0} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of} \\ $$$$\sqrt{\mathrm{2}}{a}^{\mathrm{3}} \:+\:\frac{\mathrm{3}}{{ab}\:−\:{b}^{\mathrm{2}} } \\ $$
Question Number 44355 Answers: 0 Comments: 0
Question Number 44200 Answers: 0 Comments: 4
Question Number 44095 Answers: 1 Comments: 0
Question Number 44062 Answers: 1 Comments: 0
Question Number 44038 Answers: 2 Comments: 0
$$\mathrm{How}\:\mathrm{many}\:\mathrm{times}\:\mathrm{does}\:\mathrm{the}\:\mathrm{digit}\:\mathrm{6}\:\mathrm{appear}\:\mathrm{when}\:\mathrm{writing}\:\mathrm{from}\:\:\mathrm{6}\:\mathrm{to}\:\mathrm{400}\:? \\ $$
Question Number 44029 Answers: 0 Comments: 0
Question Number 43971 Answers: 1 Comments: 0
Question Number 43902 Answers: 2 Comments: 4
$$\sqrt{{a}−{b}}\:+\:\sqrt{{a}+{b}}\:=\:{c} \\ $$$$\sqrt{{a}−{c}}\:+\:\sqrt{{a}+{c}}\:=\:{b} \\ $$$${Solve}\:{for}\:{real}\:{b},\:{and}\:{c}\:;\:{in}\:{terms}\: \\ $$$${of}\:{real}\:{a}. \\ $$
Question Number 43894 Answers: 0 Comments: 0
$$\mid{z}\mid=\mid{Arg}\:\left(\frac{{a}}{{b}}\pi\right)\mid=\mathrm{1}\wedge{k},\:{n}\in\mathbb{Z}\wedge{b}\neq\mathrm{0}\leqslant{k}<{n}: \\ $$$${x}^{{n}} ={z}\Rightarrow{x}={e}^{\frac{\mathrm{2}{k}+{a}}{{bm}}\pi{i}} \\ $$$$\mathrm{To}\:\mathrm{prove}\:\mathrm{that},\:\mathrm{please}. \\ $$
Question Number 43804 Answers: 1 Comments: 0
$${solve}\:{for}\:\epsilon \\ $$$$ \\ $$$${s}\left(\mathrm{1}−\alpha\right)=\left(\mathrm{1}−\epsilon\right)\sigma{T}^{\mathrm{4}} \\ $$
Question Number 43759 Answers: 2 Comments: 0
Question Number 43757 Answers: 0 Comments: 0
$$\mathrm{Probably}\:\mathrm{if}\:{x}^{{n}} ={Am}\:\left(\frac{{a}}{{b}}\pi\right),\:{x}={e}^{\frac{\mathrm{2}{k}+{a}}{{bn}}{i}\pi} \\ $$$$\mathrm{about}\:\mathrm{0}<\left({k}\in\mathbb{N}\cup\left\{\mathrm{0}\right\}\right)<\left({n}\in\mathbb{N}\right)\:\mathrm{and}\:{b}\neq\mathrm{0}. \\ $$$$\mathrm{p}.\mathrm{s}.\:{Am}\:\left(\mathrm{0}°\right)=\mathrm{1},\:{Am}\:\left(\mathrm{90}°\right)={i}\:\mathrm{etc}., \\ $$$$\mathrm{and}\:{s}°=\frac{\pi}{\mathrm{180}}{s}\:\mathrm{rad}\left(\mathrm{ians}\right)=\frac{\pi}{\mathrm{180}}{s}. \\ $$
Question Number 43756 Answers: 1 Comments: 0
$$\:\:\boldsymbol{{x}}^{\mathrm{3}} +\boldsymbol{{px}}+\boldsymbol{{q}}\:=\:\mathrm{0} \\ $$$$\boldsymbol{{If}}\:\boldsymbol{{equation}}\:\boldsymbol{{has}}\:\boldsymbol{{all}}\:\boldsymbol{{its}}\:\boldsymbol{{roots}} \\ $$$$\boldsymbol{{real}},\:\boldsymbol{{find}}\:\boldsymbol{{them}}. \\ $$
Question Number 43753 Answers: 0 Comments: 0
Question Number 43716 Answers: 1 Comments: 3
Question Number 43707 Answers: 1 Comments: 3
$$\mathrm{Simplify}:\:\:\: \\ $$$$\left(\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\right)\left(\mathrm{x}^{−\mathrm{1}} \:+\:\mathrm{y}^{−\mathrm{1}} \:+\:\mathrm{z}^{−\mathrm{1}} \right)\:=\:\left(\mathrm{x}^{−\mathrm{1}} \:\mathrm{y}^{−\mathrm{1}} \:\mathrm{z}^{−\mathrm{1}} \right)\left(\mathrm{x}\:+\:\mathrm{y}\right)\left(\mathrm{y}\:+\:\mathrm{z}\right)\left(\mathrm{z}\:+\:\mathrm{x}\right) \\ $$
Pg 322 Pg 323 Pg 324 Pg 325 Pg 326 Pg 327 Pg 328 Pg 329 Pg 330 Pg 331
Terms of Service
Privacy Policy
Contact: info@tinkutara.com