Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 327
Question Number 33569 Answers: 1 Comments: 0
$$\mathrm{Given}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c} \\ $$$$\mathrm{with}\:{a},\:{b},\:{c}\:\in\:\mathbb{R},\:\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:{x}_{\mathrm{1}} ,\:{x}_{\mathrm{2}} ,\:{x}_{\mathrm{3}} \:\in\:\mathbb{R} \\ $$$$\mathrm{Let}\:\lambda\:\mathrm{is}\:\mathrm{an}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{that}\:\mathrm{satisfied} \\ $$$${x}_{\mathrm{2}} \:−\:{x}_{\mathrm{1}} \:=\:\lambda \\ $$$${x}_{\mathrm{3}} \:>\:\frac{\mathrm{1}}{\mathrm{2}}\left({x}_{\mathrm{1}} \:+\:{x}_{\mathrm{2}} \right) \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{max}\:\mathrm{value}\:\mathrm{of}\:\:\frac{\mathrm{2}{a}^{\mathrm{3}} \:+\:\mathrm{27}{c}\:−\:\mathrm{9}{ab}}{\lambda^{\mathrm{3}} }\:? \\ $$
Question Number 33518 Answers: 0 Comments: 0
$$\alpha^{\mathrm{4}} +\beta^{\mathrm{4}\:} {solve}\:{please} \\ $$
Question Number 33515 Answers: 0 Comments: 1
$${expand}\:\alpha^{\mathrm{4}} +\beta^{\beta\:\:} {please} \\ $$
Question Number 33496 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{e}^{\mathrm{i}\pi} +\mathrm{1}=\mathrm{0} \\ $$
Question Number 33473 Answers: 1 Comments: 3
$$\:{e}^{{i}\pi\:} =\:−\mathrm{1} \\ $$$${squaring}\:{both}\:{sides} \\ $$$${e}^{\mathrm{2}\pi{i}} \:=\:\mathrm{1}\:=\:{e}^{\mathrm{0}} \\ $$$${comparing}\:{powers} \\ $$$$\mathrm{2}\pi{i}\:=\:\mathrm{0} \\ $$$$\:\pi\:=\:\mathrm{0}\:{or}\:{i}\:=\:\mathrm{0}\:??? \\ $$
Question Number 33468 Answers: 1 Comments: 0
$${The}\:{set}\:{of}\:{integers}\:{that}\:{satisfies} \\ $$$$\mathrm{5}>\mid{n}−\mathrm{2}\mid\geqslant\mid{n}+\mathrm{1}\mid\:{is} \\ $$
Question Number 33307 Answers: 0 Comments: 0
$${let}\:{z}={x}+{iy}\:\:{with}\:{x}\neq\mathrm{0}\:{prove}?{that} \\ $$$$\mid\:\frac{{e}^{{z}} \:−\mathrm{1}}{{z}}\:\mid\leqslant\mid\:\frac{{e}^{{x}} \:−\mathrm{1}}{{x}}\:\mid \\ $$
Question Number 33240 Answers: 0 Comments: 3
Question Number 33200 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{2}^{\mathrm{3n}+\mathrm{2}} \:−\mathrm{7}×\mathrm{2}^{\mathrm{2n}+\mathrm{2}} \:−\mathrm{31}×\mathrm{2}^{\mathrm{n}} \:−\mathrm{8}=\mathrm{0},\:\mathrm{n}\in\boldsymbol{\mathrm{R}}. \\ $$$$\mathrm{I}\:\mathrm{need}\:\mathrm{some}\:\mathrm{help}\:\mathrm{with}\:\mathrm{this} \\ $$
Question Number 33193 Answers: 1 Comments: 0
$$\mathrm{Q}.\:\:\mathrm{If}\:\alpha\:\mathrm{is}\:\mathrm{a}\:\mathrm{root}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{1}=\mathrm{0}, \\ $$$$\:\:\:\:\:\:\:\:\mathrm{prove}\:\mathrm{that}\:\mathrm{the}\:\mathrm{other}\:\mathrm{roots}\:\mathrm{are} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}−\alpha^{\mathrm{2}} \:\mathrm{and}\:\alpha^{\mathrm{2}} −\alpha−\mathrm{2}. \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Please}\:\mathrm{help}. \\ $$
Question Number 33186 Answers: 1 Comments: 0
$${Find}\:{the}\:{exact}\:{value}\:{of}\:{sin}\theta\:{if} \\ $$$${cos}\theta=\frac{\mathrm{1}}{\mathrm{57}}\:{and}\:\theta\:{is}\:{obtuse} \\ $$
Question Number 33032 Answers: 1 Comments: 5
$${f}:{N}\rightarrow{R} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{2005}. \\ $$$${and}\: \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+......+{f}\left({n}\right)=\:{n}^{\mathrm{2}} \:{f}\left({n}\right),{n}>\mathrm{1}. \\ $$$${Then}\:{f}\left(\mathrm{2004}\right)=? \\ $$
Question Number 32977 Answers: 1 Comments: 0
$${Prove}\:{that}\:\:^{{n}} {C}_{{r}} \:\:+\:^{{n}} {C}_{{r}+\mathrm{1}} \:=\:^{{n}+\mathrm{1}} {C}_{{r}+\mathrm{1}} \\ $$$$ \\ $$
Question Number 32889 Answers: 0 Comments: 1
Question Number 32868 Answers: 0 Comments: 0
Question Number 32832 Answers: 0 Comments: 0
$$\mathrm{Determine}\:\mathrm{n}\:\mathrm{such}\:\mathrm{that}\:\mathrm{1001n}+\mathrm{1}\:\mathrm{is} \\ $$$$\mathrm{perfect}\:\mathrm{cube}. \\ $$
Question Number 32788 Answers: 0 Comments: 1
$$\boldsymbol{{T}}{he}\:{least}\:{positive}\:{integral}\:{value}\:{of} \\ $$$$'{x}'\:{satisfying}\:: \\ $$$$\left({e}^{{x}} −\mathrm{2}\right)\left(\mathrm{sin}\:\left({x}+\frac{\pi}{\mathrm{4}}\right)\right)\left({x}−\mathrm{log}_{{e}} \:\underset{} {\mathrm{2}}\right)\left({sinx}\:−\:{cosx}\right)<\mathrm{0} \\ $$
Question Number 32780 Answers: 2 Comments: 0
$$\mathrm{10}−\mathrm{8}=\frac{{p}}{\mathrm{9}} \\ $$
Question Number 32768 Answers: 1 Comments: 0
$$\mathrm{Prove}\:\mathrm{that}\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \geqslant{ab}+{bc}+{ca} \\ $$$$\forall\:{a},{b},{c}\in\mathbb{R} \\ $$
Question Number 32767 Answers: 0 Comments: 2
$$\mathrm{For}\:{a},{b},{c}\geqslant\mathrm{0}\:\mathrm{if}\:{a}+{b}+{c}={n},\:\mathrm{determine} \\ $$$$\mathrm{minimum}\:\mathrm{and}\:\mathrm{maximum}\:\mathrm{values}\:\mathrm{of} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{ab}−{bc}−{ca}. \\ $$
Question Number 32682 Answers: 1 Comments: 0
$$\boldsymbol{{I}}{f}\:{x}_{\mathrm{1}} \:{and}\:{x}_{\mathrm{2}\:} \:{are}\:{roots}\:{of}\:{the}\:{equation} \\ $$$${acos}\:\mathrm{2}{x}+{bsin}\:{x}\:=\:{c}\:{and}\: \\ $$$$\mathrm{2}{sin}\:{x}_{\mathrm{1}} {sinx}_{\mathrm{2}} =\:{sin}\:{x}_{\mathrm{1}} +{sinx}_{\mathrm{2}} .\:\boldsymbol{{T}}{hen}\: \\ $$$${the}\:{value}\:{of}\:\:\frac{{b}}{{c}−{a}}\:{is}\:? \\ $$
Question Number 32681 Answers: 0 Comments: 2
$$\boldsymbol{{T}}{otal}\:{no}.\:{of}\:{polynomials}\:{of}\:{the}\:{form} \\ $$$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}\:\:{that}\:{are}\:{divisible}\:{by}\: \\ $$$${x}^{\mathrm{2}} +\mathrm{1},\:{where}\:{a},{b},{c}\in\mathrm{1},\mathrm{2},\mathrm{3},....,\mathrm{10}\:{is}\: \\ $$$$\left.\mathrm{1}\right)\:\mathrm{10} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{15} \\ $$$$\left.\mathrm{3}\right)\:\mathrm{5} \\ $$$$\left.\mathrm{4}\right)\:\mathrm{8} \\ $$
Question Number 32650 Answers: 2 Comments: 0
$${f}\left({x}\right)=\mathrm{8}{x}−\mathrm{34}\sqrt{\mathrm{25}−\mathrm{4}\:\frac{\mathrm{3}}{\mathrm{2}}} \\ $$
Question Number 32648 Answers: 1 Comments: 0
Question Number 32647 Answers: 1 Comments: 0
Question Number 32632 Answers: 0 Comments: 2
Pg 322 Pg 323 Pg 324 Pg 325 Pg 326 Pg 327 Pg 328 Pg 329 Pg 330 Pg 331
Terms of Service
Privacy Policy
Contact: info@tinkutara.com