Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 327

Question Number 46959    Answers: 1   Comments: 5

The reminder when polynomial 1+x^2 +x^4 +x^6 +....+x^(22) is divided by 1+x^ +x^2 +x^3 +.....+x^(11) is =?

$${The}\:{reminder}\:{when}\:{polynomial} \\ $$$$\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} +....+{x}^{\mathrm{22}} \:{is}\:{divided}\:{by} \\ $$$$\mathrm{1}+{x}^{} +{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.....+{x}^{\mathrm{11}} \:{is}\:=? \\ $$

Question Number 46882    Answers: 0   Comments: 2

factorize inside C[x] x^2 +y^2 +z^2

$${factorize}\:{inside}\:{C}\left[{x}\right]\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \\ $$

Question Number 46881    Answers: 0   Comments: 1

factorize inside C[x] the polynom x^n +y^n

$${factorize}\:{inside}\:{C}\left[{x}\right]\:{the}\:{polynom}\:\:{x}^{{n}} \:+{y}^{{n}} \\ $$

Question Number 46880    Answers: 0   Comments: 0

factorize inside C[x] x^n −y^n with n natural integr

$${factorize}\:{inside}\:{C}\left[{x}\right]\:{x}^{{n}} −{y}^{{n}} \:\:{with}\:{n}\:{natural}\:{integr} \\ $$

Question Number 46785    Answers: 1   Comments: 0

Solve the system: x + y + z = 30 ..... equation (i) (x/3) + (y/2) + 2z = 30 ...... equation (ii)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{30}\:\:\:\:\:\:\:\:\:.....\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{x}}{\mathrm{3}}\:+\:\frac{\mathrm{y}}{\mathrm{2}}\:+\:\mathrm{2z}\:\:=\:\:\mathrm{30}\:\:\:\:\:......\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Question Number 46738    Answers: 0   Comments: 2

please help Write an algorithm that will find the solution of the equation f(x)= { ((−x, when x<0)),((x, when x≥0)) :}

$${please}\:{help} \\ $$$$ \\ $$$${Write}\:{an}\:{algorithm}\:{that}\:{will}\:{find} \\ $$$${the}\:{solution}\:{of}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)=\begin{cases}{−{x},\:{when}\:{x}<\mathrm{0}}\\{{x},\:\:\:\:\:{when}\:{x}\geqslant\mathrm{0}}\end{cases} \\ $$

Question Number 46713    Answers: 1   Comments: 0

((x−1)/(x−2))−((x−2)/(x−3))=((x−5)/(x−6))−((x−6)/(x−7)) solve for x

$$\frac{{x}−\mathrm{1}}{{x}−\mathrm{2}}−\frac{{x}−\mathrm{2}}{{x}−\mathrm{3}}=\frac{{x}−\mathrm{5}}{{x}−\mathrm{6}}−\frac{{x}−\mathrm{6}}{{x}−\mathrm{7}} \\ $$$$\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}} \\ $$

Question Number 46681    Answers: 1   Comments: 2

Question Number 46680    Answers: 1   Comments: 0

Question Number 46527    Answers: 0   Comments: 5

𝚺_(n= 1) ^∞ (((log n)/n))^2 Does the series converge or diverge, help find the sum ...

$$\underset{\mathrm{n}=\:\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\:\left(\frac{\mathrm{log}\:\mathrm{n}}{\mathrm{n}}\right)^{\mathrm{2}} \\ $$$$\mathrm{Does}\:\mathrm{the}\:\mathrm{series}\:\mathrm{converge}\:\mathrm{or}\:\mathrm{diverge},\:\:\mathrm{help}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:... \\ $$

Question Number 46425    Answers: 0   Comments: 2

let p(x)=(x+i)^n −(x−i)^n with i^2 =−1 1) find p(x) at form Σ a_k x^k 2) find the roots of p(x) 3) factorize inside C[x] p(x) 4) factorize inside R[x] the polynom p(x) 5) decompose the fraction F(x)=(1/(p(x)))

$${let}\:{p}\left({x}\right)=\left({x}+{i}\right)^{{n}} −\left({x}−{i}\right)^{{n}} \:\:\:{with}\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{p}\left({x}\right)\:{at}\:{form}\:\Sigma\:{a}_{{k}} {x}^{{k}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{inside}\:{C}\left[{x}\right]\:{p}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{factorize}\:{inside}\:{R}\left[{x}\right]\:{the}\:{polynom}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{5}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$

Question Number 46420    Answers: 0   Comments: 0

let p(x)=(1+ix)^5 −1 with i^2 =−1 1) solve inside C[x] the equation p(x)=0 2)factorize inside C[x] the polynom p(x)

$${let}\:{p}\left({x}\right)=\left(\mathrm{1}+{ix}\right)^{\mathrm{5}} −\mathrm{1}\:\:{with}\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{solve}\:{inside}\:{C}\left[{x}\right]\:{the}\:{equation}\:{p}\left({x}\right)=\mathrm{0} \\ $$$$\left.\mathrm{2}\right){factorize}\:{inside}\:{C}\left[{x}\right]\:{the}\:{polynom}\:{p}\left({x}\right) \\ $$$$ \\ $$$$ \\ $$

Question Number 46414    Answers: 2   Comments: 1

Question Number 46401    Answers: 0   Comments: 1

Find the sum of the series: (1/(1 + (√x))) , (1/(1 − x)) , (1/(1 − (√x))) , ...

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{series}:\:\:\:\frac{\mathrm{1}}{\mathrm{1}\:+\:\sqrt{\mathrm{x}}}\:,\:\:\frac{\mathrm{1}}{\mathrm{1}\:−\:\mathrm{x}}\:,\:\:\frac{\mathrm{1}}{\mathrm{1}\:−\:\sqrt{\mathrm{x}}}\:\:,\:\:...\: \\ $$

Question Number 46395    Answers: 1   Comments: 0

Question Number 46355    Answers: 0   Comments: 0

y/ax−b=j

$${y}/{ax}−{b}={j} \\ $$

Question Number 46348    Answers: 0   Comments: 0

Question Number 46297    Answers: 1   Comments: 0

Find the angle which is equal to one-eighth of its supplement.

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{which}\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{one}-\mathrm{eighth} \\ $$$$\mathrm{of}\:\mathrm{its}\:\mathrm{supplement}. \\ $$

Question Number 46268    Answers: 2   Comments: 2

please help me! L=lim_(x→1) ((p/(1−x^p ))−(q/(1−x^q ))) , (p,q∈R)

$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}! \\ $$$$\mathrm{L}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{p}}{\mathrm{1}−\mathrm{x}^{\mathrm{p}} }−\frac{\mathrm{q}}{\mathrm{1}−\mathrm{x}^{\mathrm{q}} }\right)\:,\:\left(\mathrm{p},\mathrm{q}\in\mathbb{R}\right) \\ $$

Question Number 46245    Answers: 1   Comments: 1

(1/(1.3.5))+(1/(3.5.7))+(1/(5.7.9))+.....nth term

$$\frac{\mathrm{1}}{\mathrm{1}.\mathrm{3}.\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{3}.\mathrm{5}.\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{5}.\mathrm{7}.\mathrm{9}}+.....{nth}\:{term} \\ $$

Question Number 46186    Answers: 1   Comments: 1

please help me! S=1^2 q^1 +2^2 q^2 +3^2 q^3 +...+n^2 q^n =?

$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}! \\ $$$$\mathrm{S}=\mathrm{1}^{\mathrm{2}} \mathrm{q}^{\mathrm{1}} +\mathrm{2}^{\mathrm{2}} \mathrm{q}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} \mathrm{q}^{\mathrm{3}} +...+\mathrm{n}^{\mathrm{2}} \mathrm{q}^{\mathrm{n}} =? \\ $$

Question Number 46139    Answers: 2   Comments: 1

A park has the shape of a regular hexagon of sides 2km each. A boy walks a distance of 5km along the sides of the park. What is the direct distance between the start point and the end point?

$$\mathrm{A}\:\mathrm{park}\:\mathrm{has}\:\mathrm{the}\:\mathrm{shape}\:\mathrm{of}\:\mathrm{a}\:\mathrm{regular}\:\mathrm{hexagon} \\ $$$$\mathrm{of}\:\mathrm{sides}\:\mathrm{2km}\:\mathrm{each}.\:\mathrm{A}\:\mathrm{boy}\:\mathrm{walks}\:\mathrm{a}\:\mathrm{distance} \\ $$$$\mathrm{of}\:\mathrm{5km}\:\mathrm{along}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{park}.\: \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{direct}\:\mathrm{distance}\:\mathrm{between}\: \\ $$$$\mathrm{the}\:\mathrm{start}\:\mathrm{point}\:\mathrm{and}\:\mathrm{the}\:\mathrm{end}\:\mathrm{point}? \\ $$

Question Number 46110    Answers: 1   Comments: 2

Question Number 46088    Answers: 1   Comments: 0

Question Number 45982    Answers: 1   Comments: 1

Find the value(s) of a such that a^x ≥ax with a, x∈R.

$${Find}\:{the}\:{value}\left({s}\right)\:{of}\:{a}\:{such}\:{that} \\ $$$${a}^{{x}} \geqslant{ax}\:{with}\:{a},\:{x}\in{R}. \\ $$

Question Number 45936    Answers: 0   Comments: 1

  Pg 322      Pg 323      Pg 324      Pg 325      Pg 326      Pg 327      Pg 328      Pg 329      Pg 330      Pg 331   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com