Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 327

Question Number 32208    Answers: 0   Comments: 0

Question Number 32203    Answers: 0   Comments: 5

Number of solutions of the equation z^3 +(([3(z^− )^2 ])/(∣z∣))=0 where z is a complex no.

Numberofsolutionsoftheequationz3+[3(z)2]z=0wherezisacomplexno.

Question Number 32184    Answers: 1   Comments: 0

If one vertex of the triangle having maximum area that can be inscribed in the circle ∣z−i∣=5 is 3−3i, then find other vertices of triangle.

Ifonevertexofthetrianglehavingmaximumareathatcanbeinscribedinthecirclezi∣=5is33i,thenfindotherverticesoftriangle.

Question Number 32181    Answers: 1   Comments: 1

Intercept made by the circle zz^− +a^− z+az^− +r=0 on the real axis on complex plane is :−

Interceptmadebythecirclezz+az+az+r=0ontherealaxisoncomplexplaneis:

Question Number 32160    Answers: 1   Comments: 0

If z=cosθ+isinθ is a root of equation a_0 z^n +a_1 z^(n−1) +a_2 z^(n−2) +.....+a_(n−1) z+a_n =0 then prove that: i) a_0 +a_1 cos θ+a_2 cos 2θ+.....+a_n cos nθ=0 ii) a_1 sin θ + a_2 sin 2θ+....+a_n sin nθ=0.

Ifz=cosθ+isinθisarootofequationa0zn+a1zn1+a2zn2+.....+an1z+an=0thenprovethat:i)a0+a1cosθ+a2cos2θ+.....+ancosnθ=0ii)a1sinθ+a2sin2θ+....+ansinnθ=0.

Question Number 32159    Answers: 1   Comments: 2

Express the following in a+ib form: (((cos x+isin x)(cos y+isin y))/((cosa+isin a)(cosb+isinb))).

Expressthefollowingina+ibform:(cosx+isinx)(cosy+isiny)(cosa+isina)(cosb+isinb).

Question Number 32142    Answers: 0   Comments: 0

Question Number 32132    Answers: 0   Comments: 0

∫(1/((x+1)ln(x)))dx=?

1(x+1)ln(x)dx=?

Question Number 32110    Answers: 1   Comments: 0

If y=1+x^2 +x^3 and x=1+α, where α is small, show that y≈3+5α. Hence, find the increase in y when x is increased from 1 to 1.02

Ify=1+x2+x3andx=1+α,whereαissmall,showthaty3+5α.Hence,findtheincreaseinywhenxisincreasedfrom1to1.02

Question Number 32099    Answers: 1   Comments: 0

Question Number 32094    Answers: 0   Comments: 0

Find the ordinary argument (arg z) and the principal argument (Arg z) of z=(i/(−2−2i))

Findtheordinaryargument(argz)andtheprincipalargument(Argz)ofz=i22i

Question Number 32049    Answers: 2   Comments: 0

If ∣z−6−8i∣≤4 then Minimum value of ∣z∣ is A) 4 B) 5 C) 6 D) 8.

Ifz68i∣⩽4thenMinimumvalueofzisA)4B)5C)6D)8.

Question Number 32047    Answers: 0   Comments: 1

Question Number 32002    Answers: 1   Comments: 0

If z^3 =z^ prove then ∣z∣=1.

Ifz3=z¯provethenz∣=1.

Question Number 31991    Answers: 0   Comments: 1

g_n =(√(g_(n−1) +g_(n−2) )) g_1 =1 g_2 =3 g_n =..

gn=gn1+gn2g1=1g2=3gn=..

Question Number 31990    Answers: 1   Comments: 3

a_n =2a_(n−1) +3a_(n−2) a_0 =1 a_1 =2 a_n =...

an=2an1+3an2a0=1a1=2an=...

Question Number 31963    Answers: 0   Comments: 0

find Re (((1+e^(iα) )/(1+e^(iβ) ))) and Im ( ((1+e^(iα) )/(1+e^(iβ) )) ) .

findRe(1+eiα1+eiβ)andIm(1+eiα1+eiβ).

Question Number 31927    Answers: 1   Comments: 0

The number of distinct real roots of equation x^4 −4x^3 +12x^2 +x−1=0.

Thenumberofdistinctrealrootsofequationx44x3+12x2+x1=0.

Question Number 31915    Answers: 1   Comments: 3

If : (x^2 +x+2)^2 −(a−3)(x^2 +x+1)(x^2 +x+2) + (a−4)(x^2 +x+1)^2 =0 has at least one root , then find complete set of values of a.

If:(x2+x+2)2(a3)(x2+x+1)(x2+x+2)+(a4)(x2+x+1)2=0hasatleastoneroot,thenfindcompletesetofvaluesofa.

Question Number 31895    Answers: 0   Comments: 3

Question Number 32372    Answers: 1   Comments: 0

Question Number 31868    Answers: 0   Comments: 0

Let a>b>1 be positive integers with b odd. Let n be a positive integer as well. If b^n divides a^n −1, prove that a^b > (3^n /n). Solution please. Thanks in advance!!

Leta>b>1bepositiveintegerswithbodd.Letnbeapositiveintegeraswell.Ifbndividesan1,provethatab>3nn.Solutionplease.Thanksinadvance!!

Question Number 31865    Answers: 1   Comments: 6

Range of function : f(x)= 6^x +3^x +6^(−x) +3^(−x) +2.

Rangeoffunction:f(x)=6x+3x+6x+3x+2.

Question Number 31864    Answers: 1   Comments: 0

Let S_n = Σ_(k=1) ^(4n) (−1)^((k(k+1))/2) k^2 . Then S_n can take the value(s) 1) 1056 2) 1088 3) 1120 4) 1332.

LetSn=4nk=1(1)k(k+1)2k2.ThenSncantakethevalue(s)1)10562)10883)11204)1332.

Question Number 31804    Answers: 1   Comments: 0

A quadratic equation p(x)=0 having coefficient of x^2 unity is such that p(x)=0 and p(p(p(x)))=0 have a common root then, prove that : p(0)×p(1)=0.

Aquadraticequationp(x)=0havingcoefficientofx2unityissuchthatp(x)=0andp(p(p(x)))=0haveacommonrootthen,provethat:p(0)×p(1)=0.

Question Number 31771    Answers: 1   Comments: 1

Consider a sequence in the form of groups (1),(2,2),(3,3,3),(4,4,4,4), (5,5,5,5,5),............ then the 2000th term of the above sequence is : ?

Considerasequenceintheformofgroups(1),(2,2),(3,3,3),(4,4,4,4),(5,5,5,5,5),............thenthe2000thtermoftheabovesequenceis:?

  Pg 322      Pg 323      Pg 324      Pg 325      Pg 326      Pg 327      Pg 328      Pg 329      Pg 330      Pg 331   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com