Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 324

Question Number 47778    Answers: 1   Comments: 0

f(x)=2x^3 +x^2 −2x−1 f^(−1) (x)=...

$${f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=... \\ $$

Question Number 47712    Answers: 0   Comments: 0

show that ^(^2 C_2 ) C_n = (1/((1−n)!(n−1)(n−2)(n−3)...3(2)(1)))

$${show}\:{that}\: \\ $$$$\:\:^{\:^{\mathrm{2}} \:{C}_{\mathrm{2}} \:} {C}_{{n}} =\:\frac{\mathrm{1}}{\left(\mathrm{1}−{n}\right)!\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)...\mathrm{3}\left(\mathrm{2}\right)\left(\mathrm{1}\right)} \\ $$

Question Number 47543    Answers: 2   Comments: 0

solve (1+ix)^n =n with x unknown real and n integr natural .

$${solve}\:\left(\mathrm{1}+{ix}\right)^{{n}} ={n}\:\:\:{with}\:{x}\:{unknown}\:{real}\:{and}\:{n}\:{integr}\:{natural}\:. \\ $$

Question Number 47394    Answers: 1   Comments: 1

f(z)=((3z+1)/(2−4z)) f(f(z))=...

$${f}\left({z}\right)=\frac{\mathrm{3}{z}+\mathrm{1}}{\mathrm{2}−\mathrm{4}{z}} \\ $$$${f}\left({f}\left({z}\right)\right)=... \\ $$

Question Number 47391    Answers: 2   Comments: 1

z_1 =3+i z_2 =1−2i determinant ((((2z_2 +z_1 −5−i)/(2z_1 −z_2 +3−i))))^2 =..

$${z}_{\mathrm{1}} =\mathrm{3}+{i} \\ $$$${z}_{\mathrm{2}} =\mathrm{1}−\mathrm{2}{i} \\ $$$$\begin{vmatrix}{\frac{\mathrm{2}{z}_{\mathrm{2}} +{z}_{\mathrm{1}} −\mathrm{5}−{i}}{\mathrm{2}{z}_{\mathrm{1}} −{z}_{\mathrm{2}} +\mathrm{3}−{i}}}\end{vmatrix}^{\mathrm{2}} =.. \\ $$

Question Number 47389    Answers: 0   Comments: 1

((√3)−i)^(1+2i) =...

$$\left(\sqrt{\mathrm{3}}−{i}\right)^{\mathrm{1}+\mathrm{2}{i}} =... \\ $$

Question Number 47331    Answers: 0   Comments: 1

this remained unsolved... ∣x−(3/4)∣×∣x+(5/4)∣=3; x∈C

$$\mathrm{this}\:\mathrm{remained}\:\mathrm{unsolved}... \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3};\:{x}\in\mathbb{C} \\ $$

Question Number 47291    Answers: 1   Comments: 0

solve for x∈C: ∣x−(3/4)∣×∣x+(5/4)∣=3

$$\mathrm{solve}\:\mathrm{for}\:{x}\in\mathbb{C}: \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3} \\ $$

Question Number 47239    Answers: 1   Comments: 1

((1.8×10^6 )/(tan(89.9999°))) ∼ π (upto 9 decimal places) can i have some explanations how it is worked out ? Thank you!

$$\frac{\mathrm{1}.\mathrm{8}×\mathrm{10}^{\mathrm{6}} }{{tan}\left(\mathrm{89}.\mathrm{9999}°\right)}\:\sim\:\pi\:\left({upto}\:\mathrm{9}\:{decimal}\:{places}\right) \\ $$$${can}\:{i}\:{have}\:{some}\:{explanations}\:{how}\:{it}\:{is}\:{worked}\:{out}\:? \\ $$$${Thank}\:{you}! \\ $$

Question Number 47139    Answers: 1   Comments: 0

Solve for n: 4^n + 2^n − 6 = (2^n − 4)^3 + (4^n − 2)^3 ....

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{n}:\:\:\:\:\:\:\mathrm{4}^{\mathrm{n}} \:+\:\mathrm{2}^{\mathrm{n}} \:−\:\mathrm{6}\:=\:\left(\mathrm{2}^{\mathrm{n}} \:−\:\mathrm{4}\right)^{\mathrm{3}} \:+\:\left(\mathrm{4}^{\mathrm{n}} \:−\:\mathrm{2}\right)^{\mathrm{3}} \:.... \\ $$

Question Number 47068    Answers: 1   Comments: 0

(a−b)^2

$$\left(\mathrm{a}−\mathrm{b}\right)^{\mathrm{2}} \\ $$

Question Number 47019    Answers: 2   Comments: 2

Question Number 46978    Answers: 2   Comments: 0

Question Number 46974    Answers: 2   Comments: 1

Number of integers n for which 3x^3 −25x+n=0 has three real roots is ?

$${Number}\:{of}\:{integers}\:{n}\:{for}\:{which}\: \\ $$$$\mathrm{3}{x}^{\mathrm{3}} −\mathrm{25}{x}+{n}=\mathrm{0}\:{has}\:{three}\:{real}\:{roots}\:{is}\:? \\ $$$$ \\ $$

Question Number 46973    Answers: 1   Comments: 0

Question Number 46959    Answers: 1   Comments: 5

The reminder when polynomial 1+x^2 +x^4 +x^6 +....+x^(22) is divided by 1+x^ +x^2 +x^3 +.....+x^(11) is =?

$${The}\:{reminder}\:{when}\:{polynomial} \\ $$$$\mathrm{1}+{x}^{\mathrm{2}} +{x}^{\mathrm{4}} +{x}^{\mathrm{6}} +....+{x}^{\mathrm{22}} \:{is}\:{divided}\:{by} \\ $$$$\mathrm{1}+{x}^{} +{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +.....+{x}^{\mathrm{11}} \:{is}\:=? \\ $$

Question Number 46882    Answers: 0   Comments: 2

factorize inside C[x] x^2 +y^2 +z^2

$${factorize}\:{inside}\:{C}\left[{x}\right]\:\:{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \\ $$

Question Number 46881    Answers: 0   Comments: 1

factorize inside C[x] the polynom x^n +y^n

$${factorize}\:{inside}\:{C}\left[{x}\right]\:{the}\:{polynom}\:\:{x}^{{n}} \:+{y}^{{n}} \\ $$

Question Number 46880    Answers: 0   Comments: 0

factorize inside C[x] x^n −y^n with n natural integr

$${factorize}\:{inside}\:{C}\left[{x}\right]\:{x}^{{n}} −{y}^{{n}} \:\:{with}\:{n}\:{natural}\:{integr} \\ $$

Question Number 46785    Answers: 1   Comments: 0

Solve the system: x + y + z = 30 ..... equation (i) (x/3) + (y/2) + 2z = 30 ...... equation (ii)

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{x}\:+\:\mathrm{y}\:+\:\mathrm{z}\:=\:\mathrm{30}\:\:\:\:\:\:\:\:\:.....\:\mathrm{equation}\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{x}}{\mathrm{3}}\:+\:\frac{\mathrm{y}}{\mathrm{2}}\:+\:\mathrm{2z}\:\:=\:\:\mathrm{30}\:\:\:\:\:......\:\mathrm{equation}\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\: \\ $$

Question Number 46738    Answers: 0   Comments: 2

please help Write an algorithm that will find the solution of the equation f(x)= { ((−x, when x<0)),((x, when x≥0)) :}

$${please}\:{help} \\ $$$$ \\ $$$${Write}\:{an}\:{algorithm}\:{that}\:{will}\:{find} \\ $$$${the}\:{solution}\:{of}\:{the}\:{equation} \\ $$$$\:\:\:\:\:\:\:\:\:\:{f}\left({x}\right)=\begin{cases}{−{x},\:{when}\:{x}<\mathrm{0}}\\{{x},\:\:\:\:\:{when}\:{x}\geqslant\mathrm{0}}\end{cases} \\ $$

Question Number 46713    Answers: 1   Comments: 0

((x−1)/(x−2))−((x−2)/(x−3))=((x−5)/(x−6))−((x−6)/(x−7)) solve for x

$$\frac{{x}−\mathrm{1}}{{x}−\mathrm{2}}−\frac{{x}−\mathrm{2}}{{x}−\mathrm{3}}=\frac{{x}−\mathrm{5}}{{x}−\mathrm{6}}−\frac{{x}−\mathrm{6}}{{x}−\mathrm{7}} \\ $$$$\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}} \\ $$

Question Number 46681    Answers: 1   Comments: 2

Question Number 46680    Answers: 1   Comments: 0

Question Number 46527    Answers: 0   Comments: 5

𝚺_(n= 1) ^∞ (((log n)/n))^2 Does the series converge or diverge, help find the sum ...

$$\underset{\mathrm{n}=\:\mathrm{1}} {\overset{\infty} {\boldsymbol{\sum}}}\:\left(\frac{\mathrm{log}\:\mathrm{n}}{\mathrm{n}}\right)^{\mathrm{2}} \\ $$$$\mathrm{Does}\:\mathrm{the}\:\mathrm{series}\:\mathrm{converge}\:\mathrm{or}\:\mathrm{diverge},\:\:\mathrm{help}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:... \\ $$

Question Number 46425    Answers: 0   Comments: 2

let p(x)=(x+i)^n −(x−i)^n with i^2 =−1 1) find p(x) at form Σ a_k x^k 2) find the roots of p(x) 3) factorize inside C[x] p(x) 4) factorize inside R[x] the polynom p(x) 5) decompose the fraction F(x)=(1/(p(x)))

$${let}\:{p}\left({x}\right)=\left({x}+{i}\right)^{{n}} −\left({x}−{i}\right)^{{n}} \:\:\:{with}\:{i}^{\mathrm{2}} =−\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{p}\left({x}\right)\:{at}\:{form}\:\Sigma\:{a}_{{k}} {x}^{{k}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{inside}\:{C}\left[{x}\right]\:{p}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{factorize}\:{inside}\:{R}\left[{x}\right]\:{the}\:{polynom}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{5}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{p}\left({x}\right)} \\ $$

  Pg 319      Pg 320      Pg 321      Pg 322      Pg 323      Pg 324      Pg 325      Pg 326      Pg 327      Pg 328   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com