Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 312
Question Number 58771 Answers: 0 Comments: 0
$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{{n}} } \\ $$
Question Number 58769 Answers: 0 Comments: 1
$${decompose}\:{the}\:{fractions}\:{inside}\:{C}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{5}} } \\ $$
Question Number 58716 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 58682 Answers: 1 Comments: 0
$$\mathrm{3}\frac{\mathrm{1}}{\mathrm{5}}+\mathrm{2}\frac{\mathrm{1}}{\mathrm{15}} \\ $$
Question Number 58669 Answers: 2 Comments: 0
$$\left\{\left[\mathrm{3}×\left(\mathrm{5}+\mathrm{5}\right)\right]+\mathrm{5}\right\}+\left\{\left[\mathrm{4}+\left(\mathrm{5}×\mathrm{4}\right)+\mathrm{5}\right]\right\} \\ $$
Question Number 58663 Answers: 3 Comments: 0
Question Number 58644 Answers: 1 Comments: 0
$$\mathrm{6}+\mathrm{3}^{\mathrm{2}} ×\mathrm{4} \\ $$
Question Number 58641 Answers: 1 Comments: 1
$$\mathrm{What}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{4}}? \\ $$
Question Number 58622 Answers: 1 Comments: 2
$${solve} \\ $$$${x}+{y}=\mathrm{2}{xy} \\ $$$${y}+{z}=\mathrm{3}{yz} \\ $$$${z}+{x}=\mathrm{7}{zx} \\ $$
Question Number 58592 Answers: 1 Comments: 0
$${If}\:\mid{z}−\mathrm{1}\mid=\mathrm{1},\:{then}\:{prove}\:{that}\:{arg}\left({z}\right)\:=\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{arg}\left({z}−\mathrm{1}\right). \\ $$
Question Number 58568 Answers: 2 Comments: 1
$${factorize} \\ $$$${px}^{\mathrm{2}} −{py}^{\mathrm{2}} +{qy}^{\mathrm{2}} −{px}^{\mathrm{2}} \\ $$
Question Number 58409 Answers: 0 Comments: 3
$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{expression}\:\:\:\left(\mathrm{1}\:+\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:+\:\left(\mathrm{1}\:−\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:\:\mathrm{is}\:\mathrm{even}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\:\mathrm{n}. \\ $$
Question Number 58402 Answers: 2 Comments: 2
$${The}\:{imaginary}\:{part}\:{of}\:\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{i}\right)^{\mathrm{10}} {is}\:? \\ $$
Question Number 58410 Answers: 1 Comments: 0
$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{of}\:\mathrm{three}\:\mathrm{consecutive} \\ $$$$\mathrm{number}\:\mathrm{gives}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\:\mathrm{9}. \\ $$
Question Number 58390 Answers: 2 Comments: 2
$$\mathrm{write}\:\mathrm{without}\:\mathrm{roots}\:\mathrm{in}\:\mathrm{denominator}\:\mathrm{if}\:\mathrm{possible} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}+\sqrt{{b}}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}+\sqrt{{d}}} \\ $$$$\left(\mathrm{5}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}+\sqrt{{d}}+\sqrt{{e}}} \\ $$
Question Number 58529 Answers: 3 Comments: 4
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\:=\:\mathrm{4}\:\:\:\:\:\:\:.......\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{x}}\:\:=\:\:\mathrm{9}\:\:\:\:\:\:.......\:\left(\mathrm{ii}\right) \\ $$
Question Number 58248 Answers: 1 Comments: 0
$${leg}\:{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} ,...{A}_{{n}} \:{and}\:{H}_{\mathrm{1}} ,{H}_{\mathrm{2}} ,...{H}_{{n}} \:{are}\:{n}\:{A}.{M}'{S}\: \\ $$$${and}\:{H}.{M}'{S}\:{respectively}\:{between}\:{a}\:{and}\:{b} \\ $$$${prove}\:{that}\:{A}_{{r}} {H}_{{n}−{r}+\mathrm{1}} ={ab} \\ $$$$\:{n}\geqslant{r}\geqslant\mathrm{1} \\ $$
Question Number 58246 Answers: 1 Comments: 0
$${show}\:{that} \\ $$$${P}={x}^{\mathrm{9999}} +{x}^{\mathrm{8888}} +{x}^{\mathrm{7777}} +{x}^{\mathrm{6666}} +{x}^{\mathrm{5555}} +{x}^{\mathrm{4444}} +{x}^{\mathrm{3333}} +{x}^{\mathrm{2222}} +{x}^{\mathrm{1111}} +\mathrm{1} \\ $$$${Q}={x}^{\mathrm{9}} +{x}^{\mathrm{8}} +{x}^{\mathrm{7}} +{x}^{\mathrm{6}} +{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$$${prove}\:\:{P}\:\:{is}\:{divisible}\:{by}\:{Q} \\ $$
Question Number 58210 Answers: 0 Comments: 5
$$\mathrm{find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left.\mathrm{1}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{x}−\mathrm{y} \\ $$$$\left.\mathrm{2}\right)\mathrm{xy}=\frac{\mathrm{2x}}{\mathrm{y}}=\mathrm{3}\left(\mathrm{x}−\mathrm{y}\right) \\ $$$$\left.\mathrm{3}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{2}\left(\mathrm{x}−\mathrm{y}\right). \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Question Number 58156 Answers: 1 Comments: 0
$$\mathrm{Jaiden}\:\mathrm{buys}\:\mathrm{334}\:\mathrm{cupcakes}.\mathrm{He}\:\mathrm{got}\:\mathrm{14}\:\mathrm{more}\:\mathrm{cupcakes}.\mathrm{How}\:\mathrm{many}\:\mathrm{cupcakes}\:\mathrm{did}\:\mathrm{he}\:\mathrm{got}\:\mathrm{altogether}? \\ $$
Question Number 58154 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{A}}\left(\mathrm{1},\mathrm{1}+\boldsymbol{\mathrm{i}}\right),\boldsymbol{\mathrm{B}}\left(\sqrt{\mathrm{2}}+\boldsymbol{\mathrm{i}},\mathrm{2}\right),\boldsymbol{\mathrm{C}}\left(\mathrm{1}−\mathrm{3}\boldsymbol{\mathrm{i}},\mathrm{1}−\boldsymbol{\mathrm{i}}\right) \\ $$$$\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{given}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{between}}:\:\:\boldsymbol{\mathrm{AB}}\:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{AC}}\:. \\ $$
Question Number 58153 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{arctan}}\left(\sqrt{\mathrm{2}}−\boldsymbol{\mathrm{i}}\right)=?\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{i}}=\sqrt{−\mathrm{1}}\right] \\ $$
Question Number 58145 Answers: 1 Comments: 0
$${how}\:{to}\:{factorize} \\ $$$${a}^{\mathrm{3}} {b}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{3}} \: \\ $$
Question Number 58135 Answers: 1 Comments: 0
Question Number 58092 Answers: 3 Comments: 0
$$\mathrm{6}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{5}=\mathrm{0} \\ $$
Question Number 58084 Answers: 0 Comments: 3
Pg 307 Pg 308 Pg 309 Pg 310 Pg 311 Pg 312 Pg 313 Pg 314 Pg 315 Pg 316
Terms of Service
Privacy Policy
Contact: info@tinkutara.com