Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 312
Question Number 48272 Answers: 0 Comments: 1
$$\mathrm{z}^{\mathrm{5}} =\mathrm{32} \\ $$$$\mathrm{find}\:\mathrm{all}\:{root}\:{z} \\ $$
Question Number 48225 Answers: 1 Comments: 0
$$\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{exp}\left(\frac{\mathrm{2}+\pi\mathrm{i}}{\mathrm{4}}\right)=\sqrt{\frac{{e}}{\mathrm{2}}}\left(\mathrm{1}+{i}\right) \\ $$$$\mathrm{cos}\:\left({z}_{\mathrm{1}} +{z}_{\mathrm{2}} \right)=\mathrm{cos}\:{z}_{\mathrm{1}} \mathrm{cos}\:{z}_{\mathrm{2}} −\mathrm{sin}\:{z}_{\mathrm{1}} \mathrm{sin}\:{z}_{\mathrm{2}} \\ $$
Question Number 48224 Answers: 1 Comments: 0
$${e}^{{z}} =\mathrm{1}−\sqrt{\mathrm{3}}{i} \\ $$$${z}=.. \\ $$
Question Number 48222 Answers: 0 Comments: 0
$${f}\left({x}\right)=\underset{{i}=\mathrm{0}} {\overset{{n}} {\Sigma}}{a}_{{i}} {x}^{{i}} ={a}_{{n}} {x}^{{n}} +{a}_{{n}−\mathrm{1}} {x}^{{n}−\mathrm{1}} +{a}_{{n}−\mathrm{2}} {x}^{{n}−\mathrm{2}} +\ldots+{a}_{\mathrm{2}} {x}^{\mathrm{2}} +{a}_{\mathrm{1}} {x}+{a}_{\mathrm{0}} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=... \\ $$
Question Number 48204 Answers: 1 Comments: 0
$$\mathrm{2}\left({x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}\right)\left({y}^{\mathrm{4}} −\mathrm{3}{y}^{\mathrm{2}} +\mathrm{4}\right)=\mathrm{7} \\ $$$${Find}\:\left({x},{y}\right)\:. \\ $$
Question Number 48161 Answers: 1 Comments: 1
$${f}\left({z}\right)=\frac{\mathrm{1}−{z}}{\mathrm{1}+{z}} \\ $$$${u}\left({x},{y}\right)=.. \\ $$$${v}\left({x},{y}\right)=.. \\ $$$$ \\ $$$$ \\ $$
Question Number 48075 Answers: 1 Comments: 1
$$\mathrm{solve}\:\:\:\:\:\left(\mid{x}^{\mathrm{2}} −\mathrm{1}\mid−\frac{\mathrm{1}}{\mathrm{2}}\right){x}+\frac{\sqrt{\mathrm{6}}}{\mathrm{18}}=\mathrm{0} \\ $$
Question Number 48055 Answers: 2 Comments: 6
$${Solve}\:{the}\:{system}: \\ $$$$\begin{cases}{{x}^{\mathrm{3}} +{x}^{\mathrm{2}} {y}−\mathrm{4}{xy}^{\mathrm{2}} −\mathrm{4}{y}^{\mathrm{3}} =\mathrm{0}}\\{{x}^{\mathrm{2}} −\mathrm{2}{xy}−\mathrm{3}{y}^{\mathrm{2}} −{x}−{y}=\mathrm{0}}\end{cases} \\ $$
Question Number 47993 Answers: 0 Comments: 5
$${Solve}\:{in}\:\mathbb{R} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{59}+\sqrt{{x}−\mathrm{2}}}+\sqrt[{\mathrm{3}}]{\mathrm{12}−\sqrt{{x}−\mathrm{11}}}=\mathrm{6} \\ $$
Question Number 47986 Answers: 3 Comments: 1
Question Number 47966 Answers: 1 Comments: 1
$${a}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right)+{b}\left({x}+{y}\right)=\:{c} \\ $$$$\:\&\:\:\:\:{x}^{\mathrm{2}} −{y}^{\mathrm{2}} \:=\:{R}^{\mathrm{2}} \\ $$$${Solve}\:{for}\:{x}\:{or}\:{y}\:. \\ $$
Question Number 47916 Answers: 2 Comments: 1
Question Number 47807 Answers: 1 Comments: 0
$$\mathrm{sin}\:{xy}^{\mathrm{2}} ={y}^{\mathrm{2}} +\mathrm{2}{x} \\ $$$$ \\ $$$$\mathrm{diferential}\:{express}\:\mathrm{is} \\ $$
Question Number 47778 Answers: 1 Comments: 0
$${f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=... \\ $$
Question Number 47712 Answers: 0 Comments: 0
$${show}\:{that}\: \\ $$$$\:\:^{\:^{\mathrm{2}} \:{C}_{\mathrm{2}} \:} {C}_{{n}} =\:\frac{\mathrm{1}}{\left(\mathrm{1}−{n}\right)!\left({n}−\mathrm{1}\right)\left({n}−\mathrm{2}\right)\left({n}−\mathrm{3}\right)...\mathrm{3}\left(\mathrm{2}\right)\left(\mathrm{1}\right)} \\ $$
Question Number 47543 Answers: 2 Comments: 0
$${solve}\:\left(\mathrm{1}+{ix}\right)^{{n}} ={n}\:\:\:{with}\:{x}\:{unknown}\:{real}\:{and}\:{n}\:{integr}\:{natural}\:. \\ $$
Question Number 47394 Answers: 1 Comments: 1
$${f}\left({z}\right)=\frac{\mathrm{3}{z}+\mathrm{1}}{\mathrm{2}−\mathrm{4}{z}} \\ $$$${f}\left({f}\left({z}\right)\right)=... \\ $$
Question Number 47391 Answers: 2 Comments: 1
$${z}_{\mathrm{1}} =\mathrm{3}+{i} \\ $$$${z}_{\mathrm{2}} =\mathrm{1}−\mathrm{2}{i} \\ $$$$\begin{vmatrix}{\frac{\mathrm{2}{z}_{\mathrm{2}} +{z}_{\mathrm{1}} −\mathrm{5}−{i}}{\mathrm{2}{z}_{\mathrm{1}} −{z}_{\mathrm{2}} +\mathrm{3}−{i}}}\end{vmatrix}^{\mathrm{2}} =.. \\ $$
Question Number 47389 Answers: 0 Comments: 1
$$\left(\sqrt{\mathrm{3}}−{i}\right)^{\mathrm{1}+\mathrm{2}{i}} =... \\ $$
Question Number 47331 Answers: 0 Comments: 1
$$\mathrm{this}\:\mathrm{remained}\:\mathrm{unsolved}... \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3};\:{x}\in\mathbb{C} \\ $$
Question Number 47291 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{for}\:{x}\in\mathbb{C}: \\ $$$$\mid{x}−\frac{\mathrm{3}}{\mathrm{4}}\mid×\mid{x}+\frac{\mathrm{5}}{\mathrm{4}}\mid=\mathrm{3} \\ $$
Question Number 47239 Answers: 1 Comments: 1
$$\frac{\mathrm{1}.\mathrm{8}×\mathrm{10}^{\mathrm{6}} }{{tan}\left(\mathrm{89}.\mathrm{9999}°\right)}\:\sim\:\pi\:\left({upto}\:\mathrm{9}\:{decimal}\:{places}\right) \\ $$$${can}\:{i}\:{have}\:{some}\:{explanations}\:{how}\:{it}\:{is}\:{worked}\:{out}\:? \\ $$$${Thank}\:{you}! \\ $$
Question Number 47139 Answers: 1 Comments: 0
$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{n}:\:\:\:\:\:\:\mathrm{4}^{\mathrm{n}} \:+\:\mathrm{2}^{\mathrm{n}} \:−\:\mathrm{6}\:=\:\left(\mathrm{2}^{\mathrm{n}} \:−\:\mathrm{4}\right)^{\mathrm{3}} \:+\:\left(\mathrm{4}^{\mathrm{n}} \:−\:\mathrm{2}\right)^{\mathrm{3}} \:.... \\ $$
Question Number 47068 Answers: 1 Comments: 0
$$\left(\mathrm{a}−\mathrm{b}\right)^{\mathrm{2}} \\ $$
Question Number 47019 Answers: 2 Comments: 2
Question Number 46978 Answers: 2 Comments: 0
Pg 307 Pg 308 Pg 309 Pg 310 Pg 311 Pg 312 Pg 313 Pg 314 Pg 315 Pg 316
Terms of Service
Privacy Policy
Contact: info@tinkutara.com