s=(√(a^2 +(a^2 −d)^2 ))+(√((b−a)^2 +(b^2 −a^2 )^2 ))
+(√(b^2 +(c−b^2 )^2 ))+c−d
p= a(a^2 −d)+(a+b)(b^2 −a^2 )
+b(c−b^2 )
Find a,b,c, or d in terms of s
if p is maximum.
Assume a,b,c,d ≥0 .
Let p(x) = ax^2 + bx + c be such that p(x) takes real values
for real values of x and non−real values for non−real
values of x . Prove that a = 0 and find all
possible values of c.