Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 307
Question Number 58934 Answers: 1 Comments: 0
$$\mathrm{856}×\mathrm{16} \\ $$
Question Number 58932 Answers: 0 Comments: 1
$$\mathrm{6h}=\mathrm{18} \\ $$
Question Number 58915 Answers: 2 Comments: 2
$$\mathrm{reposting}\:\mathrm{this}: \\ $$$${x}^{\mathrm{8}} −\mathrm{8}{x}^{\mathrm{7}} −\mathrm{16}{x}^{\mathrm{6}} +\mathrm{208}{x}^{\mathrm{5}} −\mathrm{152}{x}^{\mathrm{4}} −\mathrm{928}{x}^{\mathrm{3}} +\mathrm{704}{x}^{\mathrm{2}} +\mathrm{1088}{x}−\mathrm{368}=\mathrm{0} \\ $$$$\mathrm{nobody}\:\mathrm{wants}\:\mathrm{to}\:\mathrm{try}?\:\mathrm{it}'\mathrm{s}\:\mathrm{beautiful}... \\ $$
Question Number 58899 Answers: 1 Comments: 4
$$\boldsymbol{\mathrm{S}}\mathrm{olve}\:\mathrm{for}\:\:\mathrm{x}:\:\:\:\:\:\mathrm{x}^{\mathrm{x}^{\mathrm{x}} \:\:} =\:\:\mathrm{729} \\ $$
Question Number 58896 Answers: 2 Comments: 0
$$\left.\mathrm{11}\right)\:\:\mathrm{lg}_{\mathrm{4}} \mathrm{lg}_{\mathrm{4}} \mathrm{lg}_{\mathrm{2}} \mathrm{16}−\mathrm{lg}_{\mathrm{2}} \mathrm{lg}_{\mathrm{2}} \sqrt{\mathrm{3}} \\ $$$$\mathrm{12}.\:\left(\mathrm{5lg}_{\mathrm{3}} \mathrm{3}−\mathrm{lg}_{\mathrm{4}} \mathrm{1}\right)^{\mathrm{2}} +\frac{\frac{\mathrm{1}}{\mathrm{lg}_{\mathrm{2}} \mathrm{8}}×\mathrm{lg}_{\mathrm{3}} \mathrm{27}}{\mathrm{lg}_{\sqrt{\mathrm{2}}} \frac{\mathrm{1}}{\mathrm{2}}} \\ $$
Question Number 58853 Answers: 1 Comments: 0
Question Number 58851 Answers: 0 Comments: 0
$$\mathrm{6}+\mathrm{2}×\mathrm{3} \\ $$
Question Number 58816 Answers: 2 Comments: 0
Question Number 58789 Answers: 0 Comments: 2
Question Number 58780 Answers: 1 Comments: 0
$$\mathrm{367}×\mathrm{25} \\ $$$$\mathrm{397}×\mathrm{45} \\ $$$$\mathrm{484}×\mathrm{79} \\ $$
Question Number 58779 Answers: 0 Comments: 0
$$\mathrm{What}\:\mathrm{is}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}.\:\mathrm{L}=\mathrm{3}^{\mathrm{2}} \\ $$$$\mathrm{Width}=\mathrm{1}.\mathrm{3} \\ $$
Question Number 58778 Answers: 0 Comments: 0
$$\mathrm{4}.\mathrm{8}×\mathrm{1}.\mathrm{3} \\ $$
Question Number 58775 Answers: 0 Comments: 0
$$\mathrm{solve}\:\mathrm{exactly}: \\ $$$${x}^{\mathrm{8}} −\mathrm{8}{x}^{\mathrm{7}} −\mathrm{16}{x}^{\mathrm{6}} +\mathrm{208}{x}^{\mathrm{5}} −\mathrm{152}{x}^{\mathrm{4}} −\mathrm{928}{x}^{\mathrm{3}} +\mathrm{704}{x}^{\mathrm{2}} +\mathrm{1088}{x}−\mathrm{368}=\mathrm{0} \\ $$
Question Number 58772 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{6}}×\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$ \\ $$
Question Number 58771 Answers: 0 Comments: 0
$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{{n}} } \\ $$
Question Number 58769 Answers: 0 Comments: 1
$${decompose}\:{the}\:{fractions}\:{inside}\:{C}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{5}} } \\ $$
Question Number 58716 Answers: 1 Comments: 0
$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 58682 Answers: 1 Comments: 0
$$\mathrm{3}\frac{\mathrm{1}}{\mathrm{5}}+\mathrm{2}\frac{\mathrm{1}}{\mathrm{15}} \\ $$
Question Number 58669 Answers: 2 Comments: 0
$$\left\{\left[\mathrm{3}×\left(\mathrm{5}+\mathrm{5}\right)\right]+\mathrm{5}\right\}+\left\{\left[\mathrm{4}+\left(\mathrm{5}×\mathrm{4}\right)+\mathrm{5}\right]\right\} \\ $$
Question Number 58663 Answers: 3 Comments: 0
Question Number 58644 Answers: 1 Comments: 0
$$\mathrm{6}+\mathrm{3}^{\mathrm{2}} ×\mathrm{4} \\ $$
Question Number 58641 Answers: 1 Comments: 1
$$\mathrm{What}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{4}}? \\ $$
Question Number 58622 Answers: 1 Comments: 2
$${solve} \\ $$$${x}+{y}=\mathrm{2}{xy} \\ $$$${y}+{z}=\mathrm{3}{yz} \\ $$$${z}+{x}=\mathrm{7}{zx} \\ $$
Question Number 58592 Answers: 1 Comments: 0
$${If}\:\mid{z}−\mathrm{1}\mid=\mathrm{1},\:{then}\:{prove}\:{that}\:{arg}\left({z}\right)\:=\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{arg}\left({z}−\mathrm{1}\right). \\ $$
Question Number 58568 Answers: 2 Comments: 1
$${factorize} \\ $$$${px}^{\mathrm{2}} −{py}^{\mathrm{2}} +{qy}^{\mathrm{2}} −{px}^{\mathrm{2}} \\ $$
Question Number 58409 Answers: 0 Comments: 3
$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{expression}\:\:\:\left(\mathrm{1}\:+\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:+\:\left(\mathrm{1}\:−\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:\:\mathrm{is}\:\mathrm{even}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\:\mathrm{n}. \\ $$
Pg 302 Pg 303 Pg 304 Pg 305 Pg 306 Pg 307 Pg 308 Pg 309 Pg 310 Pg 311
Terms of Service
Privacy Policy
Contact: info@tinkutara.com