Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 307
Question Number 58156 Answers: 1 Comments: 0
$$\mathrm{Jaiden}\:\mathrm{buys}\:\mathrm{334}\:\mathrm{cupcakes}.\mathrm{He}\:\mathrm{got}\:\mathrm{14}\:\mathrm{more}\:\mathrm{cupcakes}.\mathrm{How}\:\mathrm{many}\:\mathrm{cupcakes}\:\mathrm{did}\:\mathrm{he}\:\mathrm{got}\:\mathrm{altogether}? \\ $$
Question Number 58154 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{A}}\left(\mathrm{1},\mathrm{1}+\boldsymbol{\mathrm{i}}\right),\boldsymbol{\mathrm{B}}\left(\sqrt{\mathrm{2}}+\boldsymbol{\mathrm{i}},\mathrm{2}\right),\boldsymbol{\mathrm{C}}\left(\mathrm{1}−\mathrm{3}\boldsymbol{\mathrm{i}},\mathrm{1}−\boldsymbol{\mathrm{i}}\right) \\ $$$$\boldsymbol{\mathrm{are}}\:\boldsymbol{\mathrm{given}}. \\ $$$$\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{angle}}\:\boldsymbol{\mathrm{between}}:\:\:\boldsymbol{\mathrm{AB}}\:\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{AC}}\:. \\ $$
Question Number 58153 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{arctan}}\left(\sqrt{\mathrm{2}}−\boldsymbol{\mathrm{i}}\right)=?\:\:\:\:\:\:\:\:\:\:\left[\boldsymbol{\mathrm{i}}=\sqrt{−\mathrm{1}}\right] \\ $$
Question Number 58145 Answers: 1 Comments: 0
$${how}\:{to}\:{factorize} \\ $$$${a}^{\mathrm{3}} {b}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}^{\mathrm{3}} \: \\ $$
Question Number 58135 Answers: 1 Comments: 0
Question Number 58092 Answers: 3 Comments: 0
$$\mathrm{6}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{6}{x}−\mathrm{5}=\mathrm{0} \\ $$
Question Number 58084 Answers: 0 Comments: 3
Question Number 58077 Answers: 1 Comments: 0
$$\frac{\mathrm{3}}{\mathrm{10}}×\mathrm{2} \\ $$
Question Number 58046 Answers: 2 Comments: 0
$$\mathrm{3}\boldsymbol{\mathrm{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{\mathrm{x}}^{\mathrm{3}} −\mathrm{7}\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{\mathrm{x}}+\mathrm{5}=\mathrm{0} \\ $$$$\boldsymbol{\mathrm{x}}=? \\ $$
Question Number 57988 Answers: 0 Comments: 5
$${list}\:{all}\:{subset}\:{of}\: \\ $$$$\left\{\mathrm{2},\mathrm{4},\mathrm{6},\mathrm{7},\mathrm{8}\right\} \\ $$
Question Number 57984 Answers: 0 Comments: 0
Question Number 58045 Answers: 1 Comments: 0
$$\left(\boldsymbol{\mathrm{x}}+\mathrm{1}\right)^{\mathrm{4}} <\mathrm{5}\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{21}\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{17}\boldsymbol{\mathrm{x}}+\mathrm{61} \\ $$$$\boldsymbol{\mathrm{find}}\:\:\boldsymbol{\mathrm{the}}\:\:\boldsymbol{\mathrm{root}}\:\:\:\boldsymbol{\mathrm{x}}? \\ $$
Question Number 57977 Answers: 0 Comments: 0
$$\mathrm{2}\left[\left(\mathrm{4}×\mathrm{5}\right)−\left(\mathrm{4}×\mathrm{3}\right)\right]=\mathrm{2}×\left[\mathrm{20}−\left(\mathrm{4}×\mathrm{3}\right)\right]=\mathrm{2}×\left[\left(\mathrm{20}−\mathrm{12}\right)\right]=\mathrm{2}×\mathrm{8}=\mathrm{16} \\ $$
Question Number 57960 Answers: 1 Comments: 0
$${Find}\:{maximum}\:{n}\:{such}\:{that}\:\mathrm{12}^{{n}} \:{divides} \\ $$$$\mathrm{100}!. \\ $$
Question Number 57955 Answers: 1 Comments: 1
Question Number 57947 Answers: 0 Comments: 0
$${let}\:{P}\left({x}\right)=\left(\mathrm{1}+{ix}\right)^{{n}} −\mathrm{1}−{ni}\:\:\:\:{with}\:{x}\:{real}\:{and}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{factorize}\:{P}\left({x}\right)\:{inside}\:{C}\left[{x}\right] \\ $$$$\left.\mathrm{3}\right)\:{factorize}\:{P}\left({x}\right)\:{inside}\:{R}\left[{x}\right] \\ $$$$\left.\mathrm{4}\right)\:{decompose}\:{the}\:{fraction}\:{F}\left({x}\right)\:=\frac{{P}^{\left(\mathrm{1}\right)} \left({x}\right)}{{P}\left({x}\right)}\:{inside}\:{C}\left({x}\right) \\ $$$${P}^{\left(\mathrm{1}\right)} \:{is}\:{the}\:{derivative}\:{of}\:{P}\:. \\ $$
Question Number 57946 Answers: 0 Comments: 0
Question Number 57932 Answers: 1 Comments: 0
$$\mathrm{7}+{g}=\mathrm{24} \\ $$$$ \\ $$
Question Number 57930 Answers: 1 Comments: 0
$$\mathrm{solve}\:\mathrm{2}.\mathrm{3}\left(\frac{\mathrm{2}}{\mathrm{11}}+\mathrm{3}\right) \\ $$
Question Number 57902 Answers: 1 Comments: 1
$${prove}\:{that}\:{the}\:{equation}\:{Z}^{{n}} =\mathrm{1}\:\:{have}\:{exacly}\:{n}\:{roots}\:\:{given}\:{by} \\ $$$${Z}_{{k}} ={e}^{{i}\frac{\mathrm{2}{k}\pi}{{n}}} \:\:\:\:{k}\in\left[\left[\mathrm{0},{n}−\mathrm{1}\right]\right] \\ $$
Question Number 57881 Answers: 0 Comments: 0
$$\mathrm{calculate}\frac{\mathrm{2}}{\mathrm{13}}×\mathrm{2}\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Question Number 57880 Answers: 0 Comments: 0
$$\mathrm{6}×\mathrm{2} \\ $$
Question Number 57818 Answers: 1 Comments: 0
Question Number 57791 Answers: 3 Comments: 0
$$\:\mathrm{If}\:\:\:\:\:\mathrm{a}\:+\:\mathrm{b}\:+\:\mathrm{c}\:\:=\:\:\mathrm{1}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{2}} \:+\:\mathrm{b}^{\mathrm{2}} \:+\:\mathrm{c}^{\mathrm{2}} \:\:=\:\:\mathrm{2} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{a}^{\mathrm{3}} \:+\:\mathrm{b}^{\mathrm{3}} \:+\:\mathrm{c}^{\mathrm{3}} \:\:=\:\:\mathrm{3}\:\: \\ $$$$\mathrm{then}\:\:\:\:\:\:\mathrm{a}^{\mathrm{5}} \:+\:\mathrm{b}^{\mathrm{5}} \:+\:\mathrm{c}^{\mathrm{5}\:\:} =\:\:? \\ $$
Question Number 57635 Answers: 1 Comments: 2
$$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cubes}\:\mathrm{of}\:\mathrm{first}\:\mathrm{n}\:\mathrm{even}\:\mathrm{number},\:\:\mathrm{and} \\ $$$$\mathrm{first}\:\mathrm{n}\:\mathrm{odd}\:\mathrm{number}. \\ $$
Question Number 57585 Answers: 2 Comments: 0
$${knowing}\:{that}\:{x}+{y}=\mathrm{1}.\:{what}\:{is}\:{the}\:{result}\:{of}\:\frac{{y}}{{x}}+\frac{{x}}{{y}} \\ $$
Pg 302 Pg 303 Pg 304 Pg 305 Pg 306 Pg 307 Pg 308 Pg 309 Pg 310 Pg 311
Terms of Service
Privacy Policy
Contact: info@tinkutara.com