just found this on the web
I thought it might help in some cases where
quartics appear i.e. Sir Aifour′s geometric
questions. sometimes we know the nature of
the roots, but how to use this information?
ax^4 +bx^3 +cx^2 +dx+e=0
1. divide by a
2. x=z−(b/(4a))
this leads to the reduced
z^4 +pz^2 +qz+r=0
now we find the nature of the roots:
T_1 =16p^4 r−4p^3 q^2 −128p^2 r^2 +144pq^2 r−27q^4 +256r^3
T_2 =p^2 +12r
T_3 =−p^2 +4r
T_1 <0 ⇒ 2 distinct real and 2 conjugated complex roots
T_1 >0∧(p<0∧T_3 <0) ⇒ 4 distinct real roots
T_1 >0∧(p>0∨T_3 >0) ⇒ 2 pairs of conjugated complex roots
T_1 =0∧(p<0∧T_3 <0∧T_2 ≠0) ⇒ 1 real double and 2 real simple roots
T_1 =0∧(T_3 >0∨(p>0∧(T_3 ≠0∨q≠0))) ⇒ 1 real double and 2 conjugated complex roots
T_1 =0∧(T_2 =0∧T_3 ≠0) ⇒ 1 real triple and 1 real simple roots
T_1 =0∧(T_3 =0∧p<0) ⇒ 2 real double roots
T_1 =0∧(T_3 =0∧p>0∧q=0) ⇒ 2 conjugated complex double roots
T_1 =0∧T_2 =0 ⇒ all roots are equal
s=(√(a^2 +(a^2 −d)^2 ))+(√((b−a)^2 +(b^2 −a^2 )^2 ))
+(√(b^2 +(c−b^2 )^2 ))+c−d
p= a(a^2 −d)+(a+b)(b^2 −a^2 )
+b(c−b^2 )
Find a,b,c, or d in terms of s
if p is maximum.
Assume a,b,c,d ≥0 .
Let p(x) = ax^2 + bx + c be such that p(x) takes real values
for real values of x and non−real values for non−real
values of x . Prove that a = 0 and find all
possible values of c.