Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 307

Question Number 63175    Answers: 0   Comments: 2

solve for x x^x^x = 16 x = 2, but how to use Lambert W function

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{x}^{\mathrm{x}} } \:=\:\:\mathrm{16} \\ $$$$\mathrm{x}\:=\:\mathrm{2},\:\:\:\:\:\mathrm{but}\:\mathrm{how}\:\mathrm{to}\:\mathrm{use}\:\mathrm{Lambert}\:\mathrm{W}\:\mathrm{function} \\ $$

Question Number 63162    Answers: 1   Comments: 3

Find the set of values of x which satisfy the inequalities (2/(x−1))≤(1/x) and x^2 −∣3x∣+2<0

$${Find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{x}\:{which}\:{satisfy}\:{the}\:{inequalities}\: \\ $$$$\frac{\mathrm{2}}{{x}−\mathrm{1}}\leqslant\frac{\mathrm{1}}{{x}}\:\:{and}\:\:{x}^{\mathrm{2}} −\mid\mathrm{3}{x}\mid+\mathrm{2}<\mathrm{0} \\ $$

Question Number 63095    Answers: 1   Comments: 0

Question Number 63090    Answers: 0   Comments: 0

s=(√(a^2 +(a^2 −d)^2 ))+(√((b−a)^2 +(b^2 −a^2 )^2 )) +(√(b^2 +(c−b^2 )^2 ))+c−d p= a(a^2 −d)+(a+b)(b^2 −a^2 ) +b(c−b^2 ) Find a,b,c, or d in terms of s if p is maximum. Assume a,b,c,d ≥0 .

$${s}=\sqrt{{a}^{\mathrm{2}} +\left({a}^{\mathrm{2}} −{d}\right)^{\mathrm{2}} }+\sqrt{\left({b}−{a}\right)^{\mathrm{2}} +\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\sqrt{{b}^{\mathrm{2}} +\left({c}−{b}^{\mathrm{2}} \right)^{\mathrm{2}} }+{c}−{d} \\ $$$$\:{p}=\:{a}\left({a}^{\mathrm{2}} −{d}\right)+\left({a}+{b}\right)\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+{b}\left({c}−{b}^{\mathrm{2}} \right) \\ $$$${Find}\:{a},{b},{c},\:{or}\:{d}\:\:{in}\:{terms}\:{of}\:{s} \\ $$$${if}\:\:{p}\:{is}\:{maximum}.\: \\ $$$${Assume}\:\:\:\:{a},{b},{c},{d}\:\geqslant\mathrm{0}\:. \\ $$

Question Number 63076    Answers: 0   Comments: 0

show that f:A→B is bijection then f(A_1 ^c )=[f(A_1 )]^c

$${show}\:{that}\:{f}:{A}\rightarrow{B}\:{is}\:{bijection}\:{then}\:{f}\left({A}_{\mathrm{1}} ^{{c}} \right)=\left[{f}\left({A}_{\mathrm{1}} \right)\right]^{{c}} \\ $$

Question Number 63021    Answers: 2   Comments: 3

solve this equation x^y =y^x x,y∈R.

$${solve}\:{this}\:{equation} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{{y}} ={y}^{{x}} \\ $$$$ \\ $$$$ \\ $$$${x},{y}\in\mathbb{R}. \\ $$

Question Number 62998    Answers: 0   Comments: 12

Solve for x: 5^x +6x=7

$${Solve}\:{for}\:{x}:\:\:\mathrm{5}^{\boldsymbol{{x}}} +\mathrm{6}\boldsymbol{{x}}=\mathrm{7} \\ $$

Question Number 62945    Answers: 1   Comments: 0

Find the greatest coefficient in the expansion of (6 − 4x)^(−3)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\:\:\left(\mathrm{6}\:−\:\mathrm{4x}\right)^{−\mathrm{3}} \\ $$

Question Number 62942    Answers: 1   Comments: 10

Make r the subject of the formular: S = ((a(r^n − 1))/(r − 1))

$$\mathrm{Make}\:\:\mathrm{r}\:\:\mathrm{the}\:\mathrm{subject}\:\mathrm{of}\:\mathrm{the}\:\mathrm{formular}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{S}\:\:=\:\:\frac{\mathrm{a}\left(\mathrm{r}^{\mathrm{n}} \:−\:\mathrm{1}\right)}{\mathrm{r}\:−\:\mathrm{1}} \\ $$

Question Number 62895    Answers: 1   Comments: 2

Question Number 62844    Answers: 1   Comments: 0

Let p(x) = ax^2 + bx + c be such that p(x) takes real values for real values of x and non−real values for non−real values of x . Prove that a = 0 and find all possible values of c.

$${Let}\:{p}\left({x}\right)\:=\:{ax}^{\mathrm{2}} \:+\:{bx}\:+\:{c}\:\:{be}\:{such}\:{that}\:{p}\left({x}\right)\:{takes}\:{real}\:{values} \\ $$$${for}\:{real}\:{values}\:{of}\:{x}\:{and}\:{non}−{real}\:{values}\:{for}\:{non}−{real} \\ $$$${values}\:{of}\:{x}\:.\:{Prove}\:{that}\:{a}\:=\:\mathrm{0}\:{and}\:{find}\:{all} \\ $$$${possible}\:{values}\:{of}\:{c}. \\ $$

Question Number 62798    Answers: 0   Comments: 0

Calculate tg(20°)+4sin(20°)+1

$$\boldsymbol{\mathrm{Calculate}} \\ $$$$\boldsymbol{\mathrm{tg}}\left(\mathrm{20}°\right)+\mathrm{4}\boldsymbol{\mathrm{sin}}\left(\mathrm{20}°\right)+\mathrm{1} \\ $$

Question Number 62676    Answers: 1   Comments: 1

Question Number 62672    Answers: 1   Comments: 9

Question Number 62669    Answers: 2   Comments: 0

calculate the value of Σ_(n=0) ^(1947) (1/(2^n +(√2^(1947) )))

$${calculate}\:{the}\:{value}\:{of}\:\underset{{n}=\mathrm{0}} {\overset{\mathrm{1947}} {\sum}}\frac{\mathrm{1}}{\mathrm{2}^{{n}} +\sqrt{\mathrm{2}^{\mathrm{1947}} }} \\ $$

Question Number 62623    Answers: 0   Comments: 0

Question Number 62577    Answers: 1   Comments: 1

Question Number 62494    Answers: 0   Comments: 0

Question Number 62489    Answers: 3   Comments: 0

solve for x: (((√(2 − x)) + (√(2 + x)))/((√(2 − x)) − (√(2 + x)))) = 3

$$\mathrm{solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\:\:\:\:\frac{\sqrt{\mathrm{2}\:−\:\mathrm{x}}\:+\:\sqrt{\mathrm{2}\:+\:\mathrm{x}}}{\sqrt{\mathrm{2}\:−\:\mathrm{x}}\:−\:\sqrt{\mathrm{2}\:+\:\mathrm{x}}}\:\:=\:\:\mathrm{3} \\ $$

Question Number 62468    Answers: 1   Comments: 1

Question Number 62452    Answers: 1   Comments: 0

Find the remainder when 2014! is divisible by 2017

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{remainder}\:\mathrm{when}\:\:\:\mathrm{2014}!\:\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\:\mathrm{2017} \\ $$

Question Number 62449    Answers: 2   Comments: 1

Find the number of digit in 2^(50)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{digit}\:\mathrm{in}\:\:\:\:\mathrm{2}^{\mathrm{50}} \\ $$

Question Number 62439    Answers: 0   Comments: 1

sove inside Z/3Z the systeme { ((5x+7y =10)),((2x+5y =8)) :}

$${sove}\:{inside}\:{Z}/\mathrm{3}{Z}\:{the}\:{systeme} \\ $$$$\begin{cases}{\mathrm{5}{x}+\mathrm{7}{y}\:=\mathrm{10}}\\{\mathrm{2}{x}+\mathrm{5}{y}\:=\mathrm{8}}\end{cases} \\ $$$$ \\ $$

Question Number 62428    Answers: 0   Comments: 6

Question Number 62424    Answers: 1   Comments: 2

Question Number 62396    Answers: 0   Comments: 0

  Pg 302      Pg 303      Pg 304      Pg 305      Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com