Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 302
Question Number 62052 Answers: 0 Comments: 1
$$\mathrm{3}\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{4}} \\ $$
Question Number 62051 Answers: 0 Comments: 1
$$\frac{\mathrm{7}^{\mathrm{5}} }{\mathrm{7}^{\mathrm{3}} } \\ $$
Question Number 62050 Answers: 0 Comments: 1
$$\left[\mathrm{3}×\mathrm{5}+\mathrm{3}\right]+\left[\mathrm{3}+\left(\mathrm{3}×\mathrm{2}\right)\right] \\ $$
Question Number 62049 Answers: 0 Comments: 1
$$\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}} \\ $$
Question Number 62048 Answers: 0 Comments: 1
$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$
Question Number 62047 Answers: 0 Comments: 1
$$\left(\mathrm{4y}\right)^{\mathrm{2}} \\ $$
Question Number 62045 Answers: 1 Comments: 0
$$\mathrm{help} \\ $$$$ \\ $$$$\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} =\mathrm{4} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$
Question Number 62041 Answers: 0 Comments: 2
Question Number 62023 Answers: 3 Comments: 3
Question Number 62046 Answers: 0 Comments: 1
$$\mathrm{4}×\left(\mathrm{3}+\mathrm{2}−\mathrm{3}\right) \\ $$
Question Number 61937 Answers: 1 Comments: 5
$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{n}^{\mathrm{3}} \:+\:\mathrm{5}}{\mathrm{n}!} \\ $$
Question Number 61895 Answers: 0 Comments: 3
$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:\:,{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{e}^{{iA}} \:\:\:{then}\:\:{cosA}\:\:{and}\:{sinA}\:. \\ $$
Question Number 61892 Answers: 0 Comments: 1
$$\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{of}\:\frac{\mathrm{2}}{\mathrm{5}} \\ $$
Question Number 61873 Answers: 1 Comments: 2
$$\sqrt[{\mathrm{3}}]{\mathrm{30x}^{\mathrm{8}} \mathrm{y}^{\mathrm{12}} }/^{\mathrm{4}} \sqrt{\mathrm{6x}^{\mathrm{2}} \mathrm{y}^{\mathrm{9}} \mathrm{z}}\:\:\:\:\mathrm{simplifh}\:\mathrm{this}\:\mathrm{question} \\ $$
Question Number 61850 Answers: 1 Comments: 8
$${Find}\:{all}\:{integer}\:{solution}\left({s}\right): \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{615}+\boldsymbol{{x}}^{\mathrm{2}} =\mathrm{2}^{\boldsymbol{{y}}} \\ $$
Question Number 61811 Answers: 0 Comments: 0
Question Number 61708 Answers: 0 Comments: 1
$$\mathrm{8}+\left(\mathrm{4}+\mathrm{3}×\mathrm{2}\right) \\ $$
Question Number 61707 Answers: 0 Comments: 1
$$\mathrm{6}^{−\mathrm{3}} \\ $$
Question Number 61706 Answers: 0 Comments: 1
$$\frac{\mathrm{7}^{\mathrm{10}} }{\mathrm{7}^{\mathrm{7}} } \\ $$
Question Number 61691 Answers: 0 Comments: 0
$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}}+\sqrt{{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{20}} \\ $$$${find}\:{the}\:{minimum}\:{value}\:{of}\:{f}\left({x}\right) \\ $$
Question Number 61652 Answers: 1 Comments: 1
$${solve}\:{inside}\:{C}\:\:{z}^{\mathrm{4}} \:=\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}\sqrt{\mathrm{3}}} \\ $$
Question Number 61651 Answers: 0 Comments: 4
$${let}\:{p}\left({x}\right)\:=\left({x}+{i}\sqrt{\mathrm{3}}\right)^{{n}} +\left({x}−{i}\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{simlify}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){decompose}\:{inside}\:{C}\left[{x}\right]\:\:{p}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {p}\left({x}\right){dx}\: \\ $$
Question Number 61650 Answers: 0 Comments: 4
$${solve}\:{inside}\:{N}^{\mathrm{2}} \:\:\:\:\left({x}+\mathrm{1}\right)\left({y}+\mathrm{2}\right)\:=\mathrm{2}{xy} \\ $$
Question Number 61605 Answers: 0 Comments: 7
$${solve}\:\:{at}\:{Z}^{\mathrm{2}} \:\:\:\:\mathrm{2}{x}\:+\mathrm{5}{y}\:=\mathrm{4} \\ $$
Question Number 61591 Answers: 1 Comments: 8
$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\sqrt[{\mathrm{2}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{4}}]{{z}}=−\mathrm{1} \\ $$
Question Number 61526 Answers: 0 Comments: 0
$${Solve}\:{for}\:{n}:\:{D}/{A}×\left\{\mathrm{1}−\frac{{P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)}{\left({P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)\right)−\frac{{R}}{{i}}×\left[\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)−\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)\right]}\right\}−\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$
Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304 Pg 305 Pg 306
Terms of Service
Privacy Policy
Contact: info@tinkutara.com