Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 302

Question Number 62052    Answers: 0   Comments: 1

3(1/4)−(3/4)

$$\mathrm{3}\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Question Number 62051    Answers: 0   Comments: 1

(7^5 /7^3 )

$$\frac{\mathrm{7}^{\mathrm{5}} }{\mathrm{7}^{\mathrm{3}} } \\ $$

Question Number 62050    Answers: 0   Comments: 1

[3×5+3]+[3+(3×2)]

$$\left[\mathrm{3}×\mathrm{5}+\mathrm{3}\right]+\left[\mathrm{3}+\left(\mathrm{3}×\mathrm{2}\right)\right] \\ $$

Question Number 62049    Answers: 0   Comments: 1

(1/4)+(1/5)

$$\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}} \\ $$

Question Number 62048    Answers: 0   Comments: 1

((1/2))^3

$$\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{3}} \\ $$

Question Number 62047    Answers: 0   Comments: 1

(4y)^2

$$\left(\mathrm{4y}\right)^{\mathrm{2}} \\ $$

Question Number 62045    Answers: 1   Comments: 0

help (x+1)^(1/2) +(x^2 −1)^(1/3) =4 find x

$$\mathrm{help} \\ $$$$ \\ $$$$\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} =\mathrm{4} \\ $$$$\mathrm{find}\:\mathrm{x} \\ $$

Question Number 62041    Answers: 0   Comments: 2

Question Number 62023    Answers: 3   Comments: 3

Question Number 62046    Answers: 0   Comments: 1

4×(3+2−3)

$$\mathrm{4}×\left(\mathrm{3}+\mathrm{2}−\mathrm{3}\right) \\ $$

Question Number 61937    Answers: 1   Comments: 5

find the value of Σ_(n = 0) ^∞ ((n^3 + 5)/(n!))

$$\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{n}^{\mathrm{3}} \:+\:\mathrm{5}}{\mathrm{n}!} \\ $$

Question Number 61895    Answers: 0   Comments: 3

let A = (((1 −1)),((0 1)) ) 1) calculate A^n 2) find e^A ,e^(−A) 3) determine e^(iA) then cosA and sinA .

$${let}\:{A}\:=\begin{pmatrix}{\mathrm{1}\:\:\:\:\:\:\:−\mathrm{1}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\end{pmatrix} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{A}^{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\:{e}^{{A}} \:\:,{e}^{−{A}} \\ $$$$\left.\mathrm{3}\right)\:{determine}\:{e}^{{iA}} \:\:\:{then}\:\:{cosA}\:\:{and}\:{sinA}\:. \\ $$

Question Number 61892    Answers: 0   Comments: 1

(1/4) of (2/5)

$$\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{of}\:\frac{\mathrm{2}}{\mathrm{5}} \\ $$

Question Number 61873    Answers: 1   Comments: 2

((30x^8 y^(12) ))^(1/3) /^4 (√(6x^2 y^9 z)) simplifh this question

$$\sqrt[{\mathrm{3}}]{\mathrm{30x}^{\mathrm{8}} \mathrm{y}^{\mathrm{12}} }/^{\mathrm{4}} \sqrt{\mathrm{6x}^{\mathrm{2}} \mathrm{y}^{\mathrm{9}} \mathrm{z}}\:\:\:\:\mathrm{simplifh}\:\mathrm{this}\:\mathrm{question} \\ $$

Question Number 61850    Answers: 1   Comments: 8

Find all integer solution(s): 615+x^2 =2^y

$${Find}\:{all}\:{integer}\:{solution}\left({s}\right): \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{615}+\boldsymbol{{x}}^{\mathrm{2}} =\mathrm{2}^{\boldsymbol{{y}}} \\ $$

Question Number 61811    Answers: 0   Comments: 0

Question Number 61708    Answers: 0   Comments: 1

8+(4+3×2)

$$\mathrm{8}+\left(\mathrm{4}+\mathrm{3}×\mathrm{2}\right) \\ $$

Question Number 61707    Answers: 0   Comments: 1

6^(−3)

$$\mathrm{6}^{−\mathrm{3}} \\ $$

Question Number 61706    Answers: 0   Comments: 1

(7^(10) /7^7 )

$$\frac{\mathrm{7}^{\mathrm{10}} }{\mathrm{7}^{\mathrm{7}} } \\ $$

Question Number 61691    Answers: 0   Comments: 0

f(x)=(√(x^4 −3x^2 +4))+(√(x^4 −3x^2 −8x+20)) find the minimum value of f(x)

$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{4}}+\sqrt{{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} −\mathrm{8}{x}+\mathrm{20}} \\ $$$${find}\:{the}\:{minimum}\:{value}\:{of}\:{f}\left({x}\right) \\ $$

Question Number 61652    Answers: 1   Comments: 1

solve inside C z^4 =((1−i)/(1+i(√3)))

$${solve}\:{inside}\:{C}\:\:{z}^{\mathrm{4}} \:=\frac{\mathrm{1}−{i}}{\mathrm{1}+{i}\sqrt{\mathrm{3}}} \\ $$

Question Number 61651    Answers: 0   Comments: 4

let p(x) =(x+i(√3))^n +(x−i(√3))^n with x real 1) simlify p(x) 2) find the roots of P(x) 3)decompose inside C[x] p(x) 4) calculate ∫_0 ^1 p(x)dx

$${let}\:{p}\left({x}\right)\:=\left({x}+{i}\sqrt{\mathrm{3}}\right)^{{n}} +\left({x}−{i}\sqrt{\mathrm{3}}\right)^{{n}} \:\:\:\:{with}\:{x}\:{real} \\ $$$$\left.\mathrm{1}\right)\:{simlify}\:{p}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{roots}\:{of}\:{P}\left({x}\right) \\ $$$$\left.\mathrm{3}\right){decompose}\:{inside}\:{C}\left[{x}\right]\:\:{p}\left({x}\right) \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {p}\left({x}\right){dx}\: \\ $$

Question Number 61650    Answers: 0   Comments: 4

solve inside N^2 (x+1)(y+2) =2xy

$${solve}\:{inside}\:{N}^{\mathrm{2}} \:\:\:\:\left({x}+\mathrm{1}\right)\left({y}+\mathrm{2}\right)\:=\mathrm{2}{xy} \\ $$

Question Number 61605    Answers: 0   Comments: 7

solve at Z^2 2x +5y =4

$${solve}\:\:{at}\:{Z}^{\mathrm{2}} \:\:\:\:\mathrm{2}{x}\:+\mathrm{5}{y}\:=\mathrm{4} \\ $$

Question Number 61591    Answers: 1   Comments: 8

solve for z∈C (z)^(1/2) =−1 (z)^(1/3) =−1 (z)^(1/4) =−1

$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\sqrt[{\mathrm{2}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{3}}]{{z}}=−\mathrm{1} \\ $$$$\sqrt[{\mathrm{4}}]{{z}}=−\mathrm{1} \\ $$

Question Number 61526    Answers: 0   Comments: 0

Solve for n: D/A×{1−((P×((((1+i)^n ×i)/((1+i)^n −1))))/((P×((((1+i)^r ×i)/((1+i)^r −1))))−(R/i)×[((1/n)+i)×((((1+i)^r ×i)/((1+i)^r −1)))−((1/n)+i)×((((1+i)^n ×i)/((1+i)^n −1)))]))}−1=0

$${Solve}\:{for}\:{n}:\:{D}/{A}×\left\{\mathrm{1}−\frac{{P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)}{\left({P}×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)\right)−\frac{{R}}{{i}}×\left[\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{r}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{r}} −\mathrm{1}}\right)−\left(\frac{\mathrm{1}}{{n}}+{i}\right)×\left(\frac{\left(\mathrm{1}+{i}\right)^{{n}} ×{i}}{\left(\mathrm{1}+{i}\right)^{{n}} −\mathrm{1}}\right)\right]}\right\}−\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$

  Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com