Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 302

Question Number 57521    Answers: 2   Comments: 1

Question Number 57513    Answers: 0   Comments: 4

There are 128 players in the first round of a knockout competition. Half of the players were knocked out in each round. How many players took part in the fourth round? How many rounds were there in this competion?

$$\mathrm{There}\:\mathrm{are}\:\mathrm{128}\:\mathrm{players}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{round} \\ $$$$\mathrm{of}\:\mathrm{a}\:\mathrm{knockout}\:\mathrm{competition}.\:\mathrm{Half}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{players}\:\mathrm{were}\:\mathrm{knocked}\:\mathrm{out}\:\mathrm{in}\:\mathrm{each}\:\mathrm{round}. \\ $$$$\mathrm{How}\:\mathrm{many}\:\mathrm{players}\:\mathrm{took}\:\mathrm{part}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{fourth}\:\mathrm{round}?\:\mathrm{How}\:\mathrm{many}\:\mathrm{rounds}\:\mathrm{were}\:\mathrm{there} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{competion}? \\ $$

Question Number 57480    Answers: 0   Comments: 2

if F(x,y)=F(y,x) and x+y=c (constant) prove that F_(max or min) =F((c/2),(c/2)).

$${if}\:{F}\left({x},{y}\right)={F}\left({y},{x}\right)\:{and}\:{x}+{y}={c}\:\left({constant}\right) \\ $$$${prove}\:{that}\:{F}_{{max}\:{or}\:{min}} ={F}\left(\frac{{c}}{\mathrm{2}},\frac{{c}}{\mathrm{2}}\right). \\ $$

Question Number 57435    Answers: 0   Comments: 0

Question Number 57434    Answers: 0   Comments: 0

is there a way to find the sum to infinity of a product operator e.g product of 1.2.3.4.5 ... [1, infinity]

$$\mathrm{is}\:\mathrm{there}\:\mathrm{a}\:\mathrm{way}\:\mathrm{to}\:\mathrm{find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{to}\:\mathrm{infinity}\:\mathrm{of}\:\mathrm{a}\:\mathrm{product}\:\mathrm{operator} \\ $$$$\:\:\mathrm{e}.\mathrm{g}\:\:\:\:\:\mathrm{product}\:\mathrm{of}\:\:\:\:\:\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}\:...\:\:\left[\mathrm{1},\:\mathrm{infinity}\right] \\ $$

Question Number 57328    Answers: 1   Comments: 0

Question Number 57251    Answers: 1   Comments: 0

Question Number 57245    Answers: 1   Comments: 0

((a^8 +a^4 +1)/(a^4 +a^2 +1))=?

$$\frac{\boldsymbol{\mathrm{a}}^{\mathrm{8}} +\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\mathrm{1}}{\boldsymbol{\mathrm{a}}^{\mathrm{4}} +\boldsymbol{\mathrm{a}}^{\mathrm{2}} +\mathrm{1}}=? \\ $$

Question Number 57244    Answers: 0   Comments: 1

Question Number 57222    Answers: 1   Comments: 0

Express 5.27 in form of a series and show that is equal to 5 (5/(18))

$$\mathrm{Express}\:\:\:\mathrm{5}.\mathrm{27}\:\:\mathrm{in}\:\mathrm{form}\:\mathrm{of}\:\mathrm{a}\:\mathrm{series}\:\mathrm{and}\:\mathrm{show}\:\mathrm{that}\:\mathrm{is}\:\mathrm{equal} \\ $$$$\mathrm{to}\:\:\:\mathrm{5}\:\frac{\mathrm{5}}{\mathrm{18}} \\ $$

Question Number 57234    Answers: 0   Comments: 0

let tbe fraction F(x)=(1/(x^n −1)) with n from n and n≥2 1) find the poles of F and decompose it inside C(x) 2)decompose F(x)inside R(x) 3) calculate ∫_2 ^3 F(x)dx .

$${let}\:{tbe}\:{fraction}\:{F}\left({x}\right)=\frac{\mathrm{1}}{{x}^{{n}} −\mathrm{1}}\:\:{with}\:{n}\:{from}\:{n}\:{and}\:{n}\geqslant\mathrm{2} \\ $$$$\left.\mathrm{1}\right)\:{find}\:{the}\:{poles}\:{of}\:{F}\:{and}\:{decompose}\:{it}\:{inside}\:{C}\left({x}\right) \\ $$$$\left.\mathrm{2}\right){decompose}\:{F}\left({x}\right){inside}\:{R}\left({x}\right) \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{2}} ^{\mathrm{3}} {F}\left({x}\right){dx}\:. \\ $$

Question Number 57163    Answers: 0   Comments: 0

Question Number 57127    Answers: 0   Comments: 24

{cos1°}+{cos2°}+{cos3°}+....+{cos270}=?

$$\left\{\boldsymbol{\mathrm{cos}}\mathrm{1}°\right\}+\left\{\boldsymbol{\mathrm{cos}}\mathrm{2}°\right\}+\left\{\boldsymbol{\mathrm{cos}}\mathrm{3}°\right\}+....+\left\{\boldsymbol{\mathrm{cos}}\mathrm{270}\right\}=? \\ $$

Question Number 57024    Answers: 0   Comments: 1

If f(x−1)=2x^3 −3x^2 +7x+10. Find f(3).

$$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}−\mathrm{1}\right)=\mathrm{2x}^{\mathrm{3}} −\mathrm{3x}^{\mathrm{2}} +\mathrm{7x}+\mathrm{10}.\:\mathrm{Find}\:\mathrm{f}\left(\mathrm{3}\right). \\ $$

Question Number 57000    Answers: 3   Comments: 1

If (x+2)^2 is a factor of the polynomial f(x)=mx^3 +x^2 +x+n, find; the values of m and n.

$$\mathrm{If}\:\left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{2}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{mx}^{\mathrm{3}} +\mathrm{x}^{\mathrm{2}} +\mathrm{x}+\mathrm{n},\:\mathrm{find}; \\ $$$$\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n}. \\ $$

Question Number 56991    Answers: 0   Comments: 4

x! − x^2 = 8 , Find x

$$\:\:\mathrm{x}!\:−\:\mathrm{x}^{\mathrm{2}} \:\:=\:\:\mathrm{8}\:,\:\:\:\:\mathrm{Find}\:\:\mathrm{x} \\ $$$$ \\ $$

Question Number 56904    Answers: 1   Comments: 0

If α and β are the roots of of the equation 3x^2 −x−3=0, find thevalue of (α^2 −β^2 ) if α>β.

$$\mathrm{If}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{3x}^{\mathrm{2}} −\mathrm{x}−\mathrm{3}=\mathrm{0},\:\mathrm{find}\:\mathrm{thevalue}\:\mathrm{of}\:\left(\alpha^{\mathrm{2}} −\beta^{\mathrm{2}} \right) \\ $$$$\mathrm{if}\:\alpha>\beta. \\ $$

Question Number 56801    Answers: 1   Comments: 0

The product of three consecutive terms of 4. The sum of the GP is −(7/3). Find the GP

$${The}\:{product}\:{of}\:{three}\:{consecutive}\:{terms} \\ $$$${of}\:\mathrm{4}.\:{The}\:{sum}\:{of}\:{the}\:{GP}\:{is}\:−\frac{\mathrm{7}}{\mathrm{3}}.\:{Find} \\ $$$${the}\:{GP} \\ $$

Question Number 56800    Answers: 0   Comments: 3

x,y,z are positive integers. find all solutions of x^2 +y^2 +1=xyz.

$${x},{y},{z}\:{are}\:{positive}\:{integers}. \\ $$$${find}\:{all}\:{solutions}\:{of}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +\mathrm{1}={xyz}. \\ $$

Question Number 56705    Answers: 1   Comments: 0

the smallest value of S={^3 (√n)−^3 (√m) ∣ n, m ∈N} is...

$$\mathrm{the}\:\:\mathrm{smallest}\:\mathrm{value}\:\mathrm{of} \\ $$$$\mathrm{S}=\left\{\:^{\mathrm{3}} \sqrt{{n}}−^{\mathrm{3}} \sqrt{{m}}\:\mid\:{n},\:{m}\:\in\mathbb{N}\right\}\:\:\mathrm{is}... \\ $$

Question Number 56697    Answers: 2   Comments: 0

Find the shortest distance between the lines L = (1, 4, 2) + N(1, 3, 2) and r = (−1, 1, −1) + λ(1, 2, −1)

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{between}\:\mathrm{the}\:\mathrm{lines} \\ $$$$\:\:\:\mathrm{L}\:\:=\:\:\left(\mathrm{1},\:\mathrm{4},\:\mathrm{2}\right)\:+\:\mathrm{N}\left(\mathrm{1},\:\mathrm{3},\:\mathrm{2}\right)\:\:\:\mathrm{and} \\ $$$$\:\:\:\mathrm{r}\:\:=\:\:\left(−\mathrm{1},\:\mathrm{1},\:−\mathrm{1}\right)\:+\:\lambda\left(\mathrm{1},\:\mathrm{2},\:−\mathrm{1}\right) \\ $$

Question Number 56696    Answers: 0   Comments: 2

Find the perpendicular distance from (1, 7, 1) to 3x − 2y + 2z = 6

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{perpendicular}\:\mathrm{distance}\:\mathrm{from}\:\:\left(\mathrm{1},\:\mathrm{7},\:\mathrm{1}\right)\:\:\mathrm{to}\:\:\mathrm{3x}\:−\:\mathrm{2y}\:+\:\mathrm{2z}\:\:=\:\:\mathrm{6} \\ $$

Question Number 56685    Answers: 1   Comments: 1

show that α^4 +β^4 = (α^2 +β^2 )^2 −2α^2 β^2

$$\mathrm{show}\:\mathrm{that}\:\alpha^{\mathrm{4}} +\beta^{\mathrm{4}} \:=\:\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)^{\mathrm{2}} \:−\mathrm{2}\alpha^{\mathrm{2}} \beta^{\mathrm{2}} \\ $$

Question Number 56643    Answers: 4   Comments: 2

Question Number 56641    Answers: 1   Comments: 2

x^5 +ax^4 +cx^2 +dx+e=0 let x=((rt+s)/(t+p)) . Find r,s,p such that equation gets transformed to λt^5 +Dt+E=0.

$$\mathrm{x}^{\mathrm{5}} +\mathrm{ax}^{\mathrm{4}} +\mathrm{cx}^{\mathrm{2}} +\mathrm{dx}+\mathrm{e}=\mathrm{0} \\ $$$$\mathrm{let}\:\mathrm{x}=\frac{\mathrm{rt}+\mathrm{s}}{\mathrm{t}+\mathrm{p}}\:\:.\:\mathrm{Find}\:\mathrm{r},\mathrm{s},\mathrm{p}\:\mathrm{such} \\ $$$$\mathrm{that}\:\mathrm{equation}\:\mathrm{gets}\:\mathrm{transformed} \\ $$$$\mathrm{to}\:\:\:\:\:\lambda\mathrm{t}^{\mathrm{5}} +\mathrm{Dt}+\mathrm{E}=\mathrm{0}. \\ $$

Question Number 56602    Answers: 1   Comments: 1

Sum the series: sin^2 (α) + sin^2 (2α) + sin^2 (3α) + ... + sin^2 (nα)

$$\mathrm{Sum}\:\mathrm{the}\:\mathrm{series}:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sin}^{\mathrm{2}} \left(\alpha\right)\:+\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{2}\alpha\right)\:+\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{3}\alpha\right)\:+\:...\:+\:\mathrm{sin}^{\mathrm{2}} \left(\mathrm{n}\alpha\right) \\ $$

  Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304      Pg 305      Pg 306   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com