Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 300

Question Number 58816    Answers: 2   Comments: 0

Question Number 58789    Answers: 0   Comments: 2

Question Number 58780    Answers: 1   Comments: 0

367×25 397×45 484×79

$$\mathrm{367}×\mathrm{25} \\ $$$$\mathrm{397}×\mathrm{45} \\ $$$$\mathrm{484}×\mathrm{79} \\ $$

Question Number 58779    Answers: 0   Comments: 0

What is area of the square. L=3^2 Width=1.3

$$\mathrm{What}\:\mathrm{is}\:\mathrm{area}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}.\:\mathrm{L}=\mathrm{3}^{\mathrm{2}} \\ $$$$\mathrm{Width}=\mathrm{1}.\mathrm{3} \\ $$

Question Number 58778    Answers: 0   Comments: 0

4.8×1.3

$$\mathrm{4}.\mathrm{8}×\mathrm{1}.\mathrm{3} \\ $$

Question Number 58775    Answers: 0   Comments: 0

solve exactly: x^8 −8x^7 −16x^6 +208x^5 −152x^4 −928x^3 +704x^2 +1088x−368=0

$$\mathrm{solve}\:\mathrm{exactly}: \\ $$$${x}^{\mathrm{8}} −\mathrm{8}{x}^{\mathrm{7}} −\mathrm{16}{x}^{\mathrm{6}} +\mathrm{208}{x}^{\mathrm{5}} −\mathrm{152}{x}^{\mathrm{4}} −\mathrm{928}{x}^{\mathrm{3}} +\mathrm{704}{x}^{\mathrm{2}} +\mathrm{1088}{x}−\mathrm{368}=\mathrm{0} \\ $$

Question Number 58772    Answers: 1   Comments: 0

(1/6)×(2/5)

$$\frac{\mathrm{1}}{\mathrm{6}}×\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$ \\ $$

Question Number 58771    Answers: 0   Comments: 0

decompose inside R(x) the fraction F(x) =(1/((x^2 −4)^n ))

$${decompose}\:{inside}\:{R}\left({x}\right)\:{the}\:{fraction} \\ $$$${F}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} −\mathrm{4}\right)^{{n}} } \\ $$

Question Number 58769    Answers: 0   Comments: 1

decompose the fractions inside C(x) 1) (1/((x^2 +1)^3 )) 2) (1/((x^2 +1)^5 ))

$${decompose}\:{the}\:{fractions}\:{inside}\:{C}\left({x}\right) \\ $$$$\left.\mathrm{1}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$\left.\mathrm{2}\right)\:\frac{\mathrm{1}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{5}} } \\ $$

Question Number 58716    Answers: 1   Comments: 0

(1/3)+(1/4)

$$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}} \\ $$

Question Number 58682    Answers: 1   Comments: 0

3(1/5)+2(1/(15))

$$\mathrm{3}\frac{\mathrm{1}}{\mathrm{5}}+\mathrm{2}\frac{\mathrm{1}}{\mathrm{15}} \\ $$

Question Number 58669    Answers: 2   Comments: 0

{[3×(5+5)]+5}+{[4+(5×4)+5]}

$$\left\{\left[\mathrm{3}×\left(\mathrm{5}+\mathrm{5}\right)\right]+\mathrm{5}\right\}+\left\{\left[\mathrm{4}+\left(\mathrm{5}×\mathrm{4}\right)+\mathrm{5}\right]\right\} \\ $$

Question Number 58663    Answers: 3   Comments: 0

Question Number 58644    Answers: 1   Comments: 0

6+3^2 ×4

$$\mathrm{6}+\mathrm{3}^{\mathrm{2}} ×\mathrm{4} \\ $$

Question Number 58641    Answers: 1   Comments: 1

What is (1/8)+(1/4)?

$$\mathrm{What}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{4}}? \\ $$

Question Number 58622    Answers: 1   Comments: 2

solve x+y=2xy y+z=3yz z+x=7zx

$${solve} \\ $$$${x}+{y}=\mathrm{2}{xy} \\ $$$${y}+{z}=\mathrm{3}{yz} \\ $$$${z}+{x}=\mathrm{7}{zx} \\ $$

Question Number 58592    Answers: 1   Comments: 0

If ∣z−1∣=1, then prove that arg(z) = (1/2)arg(z−1).

$${If}\:\mid{z}−\mathrm{1}\mid=\mathrm{1},\:{then}\:{prove}\:{that}\:{arg}\left({z}\right)\:=\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{arg}\left({z}−\mathrm{1}\right). \\ $$

Question Number 58568    Answers: 2   Comments: 1

factorize px^2 −py^2 +qy^2 −px^2

$${factorize} \\ $$$${px}^{\mathrm{2}} −{py}^{\mathrm{2}} +{qy}^{\mathrm{2}} −{px}^{\mathrm{2}} \\ $$

Question Number 58409    Answers: 0   Comments: 3

Prove without mathematical induction that the expression (1 + (√2))^(2n) + (1 − (√2))^(2n) is even for every natural number n.

$$\mathrm{Prove}\:\mathrm{without}\:\mathrm{mathematical}\:\mathrm{induction}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{expression}\:\:\:\left(\mathrm{1}\:+\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:+\:\left(\mathrm{1}\:−\:\sqrt{\mathrm{2}}\right)^{\mathrm{2n}} \:\:\mathrm{is}\:\mathrm{even}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\:\mathrm{n}. \\ $$

Question Number 58402    Answers: 2   Comments: 2

The imaginary part of ((1/2)+(1/2)i)^(10) is ?

$${The}\:{imaginary}\:{part}\:{of}\:\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}{i}\right)^{\mathrm{10}} {is}\:? \\ $$

Question Number 58410    Answers: 1   Comments: 0

Show that the sum of the cube of three consecutive number gives a multiple of 9.

$$\mathrm{Show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{cube}\:\mathrm{of}\:\mathrm{three}\:\mathrm{consecutive} \\ $$$$\mathrm{number}\:\mathrm{gives}\:\mathrm{a}\:\mathrm{multiple}\:\mathrm{of}\:\:\mathrm{9}. \\ $$

Question Number 58390    Answers: 2   Comments: 2

write without roots in denominator if possible (1) (1/(√a)) (2) (1/((√a)+(√b))) (3) (1/((√a)+(√b)+(√c))) (4) (1/((√a)+(√b)+(√c)+(√d))) (5) (1/((√a)+(√b)+(√c)+(√d)+(√e)))

$$\mathrm{write}\:\mathrm{without}\:\mathrm{roots}\:\mathrm{in}\:\mathrm{denominator}\:\mathrm{if}\:\mathrm{possible} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}+\sqrt{{b}}} \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}+\sqrt{{d}}} \\ $$$$\left(\mathrm{5}\right)\:\frac{\mathrm{1}}{\sqrt{{a}}+\sqrt{{b}}+\sqrt{{c}}+\sqrt{{d}}+\sqrt{{e}}} \\ $$

Question Number 58529    Answers: 3   Comments: 4

Solve for x and y (1/x) + (1/y) = 4 ....... (i) (x^2 /y) + (y^2 /x) = 9 ....... (ii)

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}\:\mathrm{and}\:\mathrm{y} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{x}}\:+\:\frac{\mathrm{1}}{\mathrm{y}}\:=\:\mathrm{4}\:\:\:\:\:\:\:.......\:\left(\mathrm{i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{y}}\:+\:\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{x}}\:\:=\:\:\mathrm{9}\:\:\:\:\:\:.......\:\left(\mathrm{ii}\right) \\ $$

Question Number 58248    Answers: 1   Comments: 0

leg A_1 ,A_2 ,...A_n and H_1 ,H_2 ,...H_n are n A.M′S and H.M′S respectively between a and b prove that A_r H_(n−r+1) =ab n≥r≥1

$${leg}\:{A}_{\mathrm{1}} ,{A}_{\mathrm{2}} ,...{A}_{{n}} \:{and}\:{H}_{\mathrm{1}} ,{H}_{\mathrm{2}} ,...{H}_{{n}} \:{are}\:{n}\:{A}.{M}'{S}\: \\ $$$${and}\:{H}.{M}'{S}\:{respectively}\:{between}\:{a}\:{and}\:{b} \\ $$$${prove}\:{that}\:{A}_{{r}} {H}_{{n}−{r}+\mathrm{1}} ={ab} \\ $$$$\:{n}\geqslant{r}\geqslant\mathrm{1} \\ $$

Question Number 58246    Answers: 1   Comments: 0

show that P=x^(9999) +x^(8888) +x^(7777) +x^(6666) +x^(5555) +x^(4444) +x^(3333) +x^(2222) +x^(1111) +1 Q=x^9 +x^8 +x^7 +x^6 +x^5 +x^4 +x^3 +x^2 +x+1 prove P is divisible by Q

$${show}\:{that} \\ $$$${P}={x}^{\mathrm{9999}} +{x}^{\mathrm{8888}} +{x}^{\mathrm{7777}} +{x}^{\mathrm{6666}} +{x}^{\mathrm{5555}} +{x}^{\mathrm{4444}} +{x}^{\mathrm{3333}} +{x}^{\mathrm{2222}} +{x}^{\mathrm{1111}} +\mathrm{1} \\ $$$${Q}={x}^{\mathrm{9}} +{x}^{\mathrm{8}} +{x}^{\mathrm{7}} +{x}^{\mathrm{6}} +{x}^{\mathrm{5}} +{x}^{\mathrm{4}} +{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$$${prove}\:\:{P}\:\:{is}\:{divisible}\:{by}\:{Q} \\ $$

Question Number 58210    Answers: 0   Comments: 5

find two possible number such that 1) xy=(x/y)=x−y 2)xy=((2x)/y)=3(x−y) 3) xy=(x/y)=2(x−y).

$$\mathrm{find}\:\mathrm{two}\:\mathrm{possible}\:\mathrm{number}\:\mathrm{such}\:\mathrm{that} \\ $$$$\left.\mathrm{1}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{x}−\mathrm{y} \\ $$$$\left.\mathrm{2}\right)\mathrm{xy}=\frac{\mathrm{2x}}{\mathrm{y}}=\mathrm{3}\left(\mathrm{x}−\mathrm{y}\right) \\ $$$$\left.\mathrm{3}\right)\:\:\mathrm{xy}=\frac{\mathrm{x}}{\mathrm{y}}=\mathrm{2}\left(\mathrm{x}−\mathrm{y}\right). \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

  Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com