Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 300

Question Number 67371    Answers: 1   Comments: 0

Question Number 67333    Answers: 0   Comments: 0

evaluate Σ_(n=0) ^(+∞) (1/((1+8n)^2 ))

$${evaluate}\:\underset{{n}=\mathrm{0}} {\overset{+\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{1}+\mathrm{8}{n}\right)^{\mathrm{2}} } \\ $$

Question Number 67337    Answers: 1   Comments: 0

m(p+1)=a ((q(p+1))/(r+1))=b & ((p(p+1))/(q+1))=c and ((r(p+1))/(m+1))=d find either of p,q,r,m in terms of a,b,c,d.

$${m}\left({p}+\mathrm{1}\right)={a} \\ $$$$\frac{{q}\left({p}+\mathrm{1}\right)}{{r}+\mathrm{1}}={b}\:\:\&\:\:\frac{{p}\left({p}+\mathrm{1}\right)}{{q}+\mathrm{1}}={c} \\ $$$${and}\:\:\frac{{r}\left({p}+\mathrm{1}\right)}{{m}+\mathrm{1}}={d} \\ $$$${find}\:{either}\:{of}\:{p},{q},{r},{m}\:{in}\:{terms}\:{of} \\ $$$${a},{b},{c},{d}. \\ $$

Question Number 67244    Answers: 0   Comments: 7

Which of the series converge and which diverge? Check by the limit comparison test. 1) Σ_(n=2) ^∞ ((1+n ln(n))/(n^2 +5)) 2) Σ_(n=1) ^∞ ((ln(n))/n^(3/2) ) 3) Σ_(n=3) ^∞ (1/(ln(lnn))) 4) Σ_(n=1) ^∞ (1/(n (n)^(1/n) )) ??

$${Which}\:{of}\:{the}\:{series}\:{converge}\:{and}\: \\ $$$${which}\:{diverge}?\:{Check}\:{by}\:{the}\:{limit} \\ $$$${comparison}\:{test}. \\ $$$$\left.\mathrm{1}\right)\:\underset{{n}=\mathrm{2}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}+{n}\:{ln}\left({n}\right)}{{n}^{\mathrm{2}} +\mathrm{5}} \\ $$$$\left.\mathrm{2}\right)\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{{ln}\left({n}\right)}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$\left.\mathrm{3}\right)\:\underset{{n}=\mathrm{3}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{ln}\left({lnn}\right)} \\ $$$$\left.\mathrm{4}\right)\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}\:\left({n}\right)^{\frac{\mathrm{1}}{{n}}} }\:\: \\ $$$$?? \\ $$

Question Number 67208    Answers: 1   Comments: 6

Find the times in a day when the hour′s, minute′s and second′s hand of a clock occupy the same angular position. [old question reposted]

$${Find}\:{the}\:{times}\:{in}\:{a}\:{day}\:{when} \\ $$$${the}\:{hour}'{s},\:{minute}'{s}\:{and}\:{second}'{s} \\ $$$${hand}\:{of}\:{a}\:{clock}\:{occupy}\:{the}\:{same} \\ $$$${angular}\:{position}. \\ $$$$\left[{old}\:{question}\:{reposted}\right] \\ $$

Question Number 67167    Answers: 4   Comments: 2

solve for real x and y:[a,b∈R] a. { ((x^3 +1=y^3 )),((x^2 +1=y^2 )) :} b. { ((x^3 +x^2 +1=y^3 )),((x^2 +x+1=y^2 )) :} c. { ((x^3 +y^2 =9xy)),((x^2 +y^3 =8xy)) :} d. { ((ax+by=2ab)),((x^2 +y^2 =4abxy)) :}

$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{real}}\:\:\boldsymbol{\mathrm{x}}\:\boldsymbol{\mathrm{and}}\:\:\boldsymbol{\mathrm{y}}:\left[\mathrm{a},\mathrm{b}\in\mathrm{R}\right] \\ $$$$\boldsymbol{\mathrm{a}}.\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\mathrm{1}=\boldsymbol{\mathrm{y}}^{\mathrm{3}} }\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{1}=\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\end{cases}\:\:\:\:\:\:\:\: \\ $$$$\boldsymbol{\mathrm{b}}.\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{1}=\boldsymbol{\mathrm{y}}^{\mathrm{3}} }\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}+\mathrm{1}=\boldsymbol{\mathrm{y}}^{\mathrm{2}} }\end{cases} \\ $$$$\boldsymbol{\mathrm{c}}.\begin{cases}{\boldsymbol{\mathrm{x}}^{\mathrm{3}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{9}\boldsymbol{\mathrm{xy}}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{3}} =\mathrm{8}\boldsymbol{\mathrm{xy}}}\end{cases} \\ $$$$\boldsymbol{\mathrm{d}}.\begin{cases}{\boldsymbol{\mathrm{ax}}+\boldsymbol{\mathrm{by}}=\mathrm{2}\boldsymbol{\mathrm{ab}}}\\{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{4}\boldsymbol{\mathrm{abxy}}}\end{cases} \\ $$

Question Number 67136    Answers: 2   Comments: 0

factorize 2x^3 −1

$${factorize}\:\mathrm{2}{x}^{\mathrm{3}} −\mathrm{1} \\ $$

Question Number 67025    Answers: 0   Comments: 3

Question Number 66995    Answers: 0   Comments: 4

Question Number 66969    Answers: 1   Comments: 1

Question Number 66863    Answers: 0   Comments: 0

x^3 (b−x)^2 +aex(x−b)+e^2 =0 solve for x.

$$\:\:\:{x}^{\mathrm{3}} \left({b}−{x}\right)^{\mathrm{2}} +{aex}\left({x}−{b}\right)+{e}^{\mathrm{2}} =\mathrm{0}\: \\ $$$${solve}\:{for}\:{x}. \\ $$

Question Number 66857    Answers: 0   Comments: 3

Question Number 66855    Answers: 2   Comments: 0

simplify ((p^2 +2pq+q^2 )/(p^3 −pq^2 +p^2 q−q^3 ))

$${simplify} \\ $$$$\frac{{p}^{\mathrm{2}} +\mathrm{2}{pq}+{q}^{\mathrm{2}} }{{p}^{\mathrm{3}} −{pq}^{\mathrm{2}} +{p}^{\mathrm{2}} {q}−{q}^{\mathrm{3}} } \\ $$

Question Number 66833    Answers: 0   Comments: 0

Somewhere , there are scorpio, snake and mouse. We ascertain that : Every morning , each snake eats a mouse . Every afternoon ,each scorpio kills a snake. And every night , each mouse eats a scorpio. Two weeks passed and we find that there was remaining only one animal . 1) If that animal is a snake , how many snake were there two week ago? 2)If that animal is a scorpio , how many scorpio were there two weeks ago? 3)If that animal is a mouse ,how many mouse were there two weeks ago? 4)If there are remaining one animal of each breed , How many were they for each breed.

$${Somewhere}\:,\:{there}\:{are}\:{scorpio},\:{snake}\:{and}\:{mouse}. \\ $$$${We}\:{ascertain}\:{that}\:: \\ $$$${Every}\:{morning}\:,\:{each}\:{snake}\:{eats}\:{a}\:{mouse}\:. \\ $$$${Every}\:{afternoon}\:,{each}\:{scorpio}\:\:{kills}\:{a}\:{snake}. \\ $$$${And}\:{every}\:{night}\:,\:{each}\:{mouse}\:{eats}\:{a}\:{scorpio}. \\ $$$${Two}\:{weeks}\:{passed}\:{and}\:{we}\:{find}\:{that}\:{there}\:{was}\:{remaining}\:{only}\:{one}\:{animal}\:. \\ $$$$\left.\mathrm{1}\right)\:{If}\:{that}\:{animal}\:{is}\:{a}\:{snake}\:,\:{how}\:{many}\:{snake}\:{were}\:{there}\:{two}\:{week}\:{ago}? \\ $$$$\left.\mathrm{2}\right){If}\:{that}\:{animal}\:{is}\:{a}\:{scorpio}\:,\:{how}\:{many}\:{scorpio}\:{were}\:{there}\:{two}\:{weeks}\:{ago}? \\ $$$$\left.\mathrm{3}\right){If}\:{that}\:{animal}\:{is}\:{a}\:{mouse}\:,{how}\:{many}\:{mouse}\:{were}\:{there}\:\:{two}\:{weeks}\:{ago}? \\ $$$$\left.\mathrm{4}\right){If}\:{there}\:{are}\:{remaining}\:{one}\:{animal}\:{of}\:{each}\:{breed}\:,\:{How}\:{many}\:{were}\:{they}\:{for}\:{each}\:{breed}. \\ $$

Question Number 66827    Answers: 0   Comments: 3

Question Number 66769    Answers: 1   Comments: 2

simplify ((x+4)/(x−4))−((5x+20)/(x^2 −16))

$${simplify} \\ $$$$\frac{{x}+\mathrm{4}}{{x}−\mathrm{4}}−\frac{\mathrm{5}{x}+\mathrm{20}}{{x}^{\mathrm{2}} −\mathrm{16}} \\ $$

Question Number 66760    Answers: 2   Comments: 2

By writing your answer in the form a^y simplify (3^(5x) ×5^(2x) ×3^(−x) ÷5^(−2x) )^(1/4)

$${By}\:{writing}\:{your}\:{answer}\:{in}\:{the} \\ $$$${form}\:{a}^{{y}} \:{simplify} \\ $$$$\left(\mathrm{3}^{\mathrm{5}{x}} ×\mathrm{5}^{\mathrm{2}{x}} ×\mathrm{3}^{−{x}} \boldsymbol{\div}\mathrm{5}^{−\mathrm{2}{x}} \right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$

Question Number 66743    Answers: 0   Comments: 4

Each month a store owner can spend at most $100,000 on PC′s and laptops. A PC costs the store owner $1000 and a laptop costs him $1500. Each PC is sold for a profit of $400 while a laptop is sold for a profit of $700. The store owner estimates that at least 15 PC′s but no more than 80 are sold each month. He also estimates that the number of laptops sold is at most half the PC′s. How many PC′s and how many laptops should be sold in order to maximize the profit?

$$\mathrm{Each}\:\mathrm{month}\:\mathrm{a}\:\mathrm{store}\:\mathrm{owner}\:\mathrm{can}\:\mathrm{spend}\:\mathrm{at} \\ $$$$\mathrm{most}\:\$\mathrm{100},\mathrm{000}\:\mathrm{on}\:\mathrm{PC}'\mathrm{s}\:\mathrm{and}\:\mathrm{laptops}.\:\mathrm{A} \\ $$$$\mathrm{PC}\:\mathrm{costs}\:\mathrm{the}\:\mathrm{store}\:\mathrm{owner}\:\$\mathrm{1000}\:\mathrm{and}\:\mathrm{a} \\ $$$$\mathrm{laptop}\:\mathrm{costs}\:\mathrm{him}\:\$\mathrm{1500}.\:\mathrm{Each}\:\mathrm{PC}\:\mathrm{is}\:\mathrm{sold} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{profit}\:\mathrm{of}\:\$\mathrm{400}\:\mathrm{while}\:\mathrm{a}\:\mathrm{laptop}\:\mathrm{is}\:\mathrm{sold} \\ $$$$\mathrm{for}\:\mathrm{a}\:\mathrm{profit}\:\mathrm{of}\:\$\mathrm{700}.\:\mathrm{The}\:\mathrm{store}\:\mathrm{owner}\:\mathrm{estimates} \\ $$$$\mathrm{that}\:\mathrm{at}\:\mathrm{least}\:\mathrm{15}\:\mathrm{PC}'\mathrm{s}\:\mathrm{but}\:\mathrm{no}\:\mathrm{more}\:\mathrm{than} \\ $$$$\mathrm{80}\:\mathrm{are}\:\mathrm{sold}\:\mathrm{each}\:\mathrm{month}.\:\mathrm{He}\:\mathrm{also}\:\mathrm{estimates} \\ $$$$\mathrm{that}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{laptops}\:\mathrm{sold}\:\mathrm{is}\:\mathrm{at}\:\mathrm{most} \\ $$$$\mathrm{half}\:\mathrm{the}\:\mathrm{PC}'\mathrm{s}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{PC}'\mathrm{s}\:\mathrm{and}\:\mathrm{how} \\ $$$$\mathrm{many}\:\mathrm{laptops}\:\mathrm{should}\:\mathrm{be}\:\mathrm{sold}\:\mathrm{in}\:\mathrm{order}\:\mathrm{to} \\ $$$$\mathrm{maximize}\:\mathrm{the}\:\mathrm{profit}? \\ $$

Question Number 66715    Answers: 0   Comments: 4

if f(x)=((ln (x+(√(1+x^2 ))))/(√(1+x^2 ))) f^(−1) (x)=?

$${if}\:{f}\left({x}\right)=\frac{\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Question Number 66619    Answers: 1   Comments: 0

solve for x,y∈R ((√(1+x^2 ))/(ln (x+(√(1+x^2 )))))=((√(1+y^2 ))/(ln (y+(√(1+y^2 )))))

$${solve}\:{for}\:{x},{y}\in{R} \\ $$$$\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\mathrm{ln}\:\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}=\frac{\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }}{\mathrm{ln}\:\left({y}+\sqrt{\mathrm{1}+{y}^{\mathrm{2}} }\right)} \\ $$

Question Number 66546    Answers: 0   Comments: 6

Question Number 66508    Answers: 0   Comments: 3

Question Number 66382    Answers: 0   Comments: 14

Give me any Quintic, i shall solve it. For sure! At^5 +Bt^4 +Ct^3 +Dt^2 +Et+F=0 wont even assume A=1, or B=0. but if A+C+E=B+D+F then my formula dont work but then obviously t=−1 is a root!

$${Give}\:{me}\:{any}\:{Quintic},\:{i}\:{shall}\:{solve} \\ $$$${it}.\:{For}\:{sure}! \\ $$$${At}^{\mathrm{5}} +{Bt}^{\mathrm{4}} +{Ct}^{\mathrm{3}} +{Dt}^{\mathrm{2}} +{Et}+{F}=\mathrm{0} \\ $$$${wont}\:{even}\:{assume}\:{A}=\mathrm{1},\:{or}\:{B}=\mathrm{0}. \\ $$$${but}\:{if}\:{A}+{C}+{E}={B}+{D}+{F}\: \\ $$$${then}\:{my}\:{formula}\:{dont}\:{work} \\ $$$${but}\:{then}\:{obviously}\:{t}=−\mathrm{1}\:{is}\:{a}\:{root}! \\ $$

Question Number 66381    Answers: 0   Comments: 0

Question Number 66302    Answers: 0   Comments: 3

solved the general quintic, despite whatever proof that it cant be solved in a simple way!

$${solved}\:{the}\:{general}\:{quintic}, \\ $$$${despite}\:{whatever}\:{proof}\:{that}\:{it} \\ $$$${cant}\:{be}\:{solved}\:{in}\:{a}\:{simple}\:{way}! \\ $$

Question Number 66290    Answers: 1   Comments: 0

(x^2 )^(1/(√3)) + x^(√3) − 392 = 0

$$\:\sqrt[{\sqrt{\mathrm{3}}}]{\boldsymbol{\mathrm{x}}^{\mathrm{2}} }\:+\:\boldsymbol{\mathrm{x}}^{\sqrt{\mathrm{3}}} \:−\:\mathrm{392}\:=\:\mathrm{0} \\ $$

  Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303      Pg 304   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com