Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 300
Question Number 64186 Answers: 1 Comments: 0
Question Number 64185 Answers: 2 Comments: 3
Question Number 64174 Answers: 0 Comments: 0
$$\mathrm{2}^{{n}} \:/\:\mathrm{5}^{\mathrm{2}^{{n}} } \:+\:\mathrm{1}\:{infinite}\:{series}\:{sum}\:{ffom}\:\mathrm{0}\:{to}\: \\ $$$${infinity} \\ $$
Question Number 64130 Answers: 2 Comments: 1
$$\sqrt{\mathrm{4}\boldsymbol{\mathrm{x}}+\frac{\mathrm{12}}{\boldsymbol{\mathrm{x}}}}=\frac{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\mathrm{7}}{\boldsymbol{\mathrm{x}}+\mathrm{1}} \\ $$$$\boldsymbol{\mathrm{x}}=? \\ $$
Question Number 64126 Answers: 1 Comments: 0
Question Number 64111 Answers: 0 Comments: 0
Question Number 64112 Answers: 2 Comments: 1
Question Number 64066 Answers: 1 Comments: 0
$${let}\:\alpha\:,\beta\:{and}\:\lambda\:{the}\:{roots}\:{of}\:{x}^{\mathrm{3}} +\mathrm{2}{x}−\mathrm{1}\:=\mathrm{0}\:{find}\:{the}\:{value}\:{of} \\ $$$${A}\:=\alpha^{\mathrm{2}} \:+\beta^{\mathrm{2}} \:+\lambda^{\mathrm{2}} \:{and}\:\:{B}\:=\alpha^{\mathrm{3}} \:+\beta^{\mathrm{3}} \:+\lambda^{\mathrm{3}} \:. \\ $$
Question Number 64061 Answers: 1 Comments: 0
$$\left(\mathrm{2}{x}+\mathrm{3}\right)^{\mathrm{2}} +\mathrm{25}/\left({x}+\mathrm{3}\right)^{\mathrm{2}} =\sqrt{\mathrm{2}} \\ $$
Question Number 63958 Answers: 0 Comments: 1
$${x}^{\mathrm{6}} −\mathrm{3}{x}^{\mathrm{5}} +\mathrm{4}{x}^{\mathrm{4}} −\mathrm{6}{x}^{\mathrm{3}} +\mathrm{5}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{2}=\mathrm{0} \\ $$
Question Number 63945 Answers: 0 Comments: 1
$${solve}\:{at}\:{Z}^{\mathrm{2}} \:\:{x}^{\mathrm{2}} −\mathrm{2}{y}^{\mathrm{2}} \:+{xy}\:+\mathrm{2}\:=\mathrm{0} \\ $$
Question Number 63930 Answers: 0 Comments: 0
Question Number 63893 Answers: 0 Comments: 1
$$\left.\mathrm{1}\right)\:{simplify}\:{W}_{{n}} \left({z}\right)=\left(\mathrm{1}+{z}\right)\left(\mathrm{1}+{z}^{\mathrm{2}} \right)....\left(\mathrm{1}+{z}^{\mathrm{2}^{{n}} } \right)\:\left({z}\:{from}\:{C}\right) \\ $$$$\left.\mathrm{2}\right)\:{simplify}\:{P}_{{n}} \left(\theta\right)\:=\left(\mathrm{1}+{e}^{{i}\theta} \right)\left(\mathrm{1}+{e}^{\mathrm{2}{i}\theta} \right).....\left(\mathrm{1}+{e}^{{i}\mathrm{2}^{{n}} \theta} \right)\:{and}\:{sove} \\ $$$${P}_{{n}} \left(\theta\right)=\mathrm{0} \\ $$
Question Number 63858 Answers: 1 Comments: 0
$$\mathrm{if}\:\mathrm{a}_{\mathrm{1}} ,\:\mathrm{a}_{\mathrm{2}} ,\:\mathrm{a}_{\mathrm{3}} ,\:\mathrm{a}_{\mathrm{4}} \:\mathrm{are}\:\mathrm{the}\:\mathrm{coefficient} \\ $$$$\mathrm{of}\:\mathrm{any}\:\mathrm{four}\:\mathrm{four}\:\mathrm{consecutive} \\ $$$$\mathrm{terms}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} \\ $$$$\mathrm{then}\:\frac{\mathrm{a}_{\mathrm{1}} }{\mathrm{a}_{\mathrm{2}} +\mathrm{a}_{\mathrm{1}} }+\frac{\mathrm{a}_{\mathrm{3}} }{\mathrm{a}_{\mathrm{3}} +\mathrm{a}_{\mathrm{4}} }\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}... \\ $$
Question Number 63803 Answers: 1 Comments: 4
Question Number 63784 Answers: 0 Comments: 6
$$\mathrm{question}\:\mathrm{63639}\:\mathrm{again} \\ $$$$\mathrm{prove}: \\ $$$$\forall{z}\in\mathbb{C}:\:\mid{z}+\mathrm{1}\mid+\mid{z}^{\mathrm{2}} +{z}+\mathrm{1}\mid+\mid{z}^{\mathrm{3}} +\mathrm{1}\mid\geqslant\mathrm{1} \\ $$
Question Number 63678 Answers: 0 Comments: 1
Question Number 63642 Answers: 2 Comments: 1
Question Number 63639 Answers: 0 Comments: 0
Question Number 63602 Answers: 2 Comments: 0
$$\mathrm{32}{x}^{\mathrm{3}} −\mathrm{48}{x}^{\mathrm{2}} −\mathrm{22}{x}−\mathrm{3}=\mathrm{0} \\ $$
Question Number 63574 Answers: 0 Comments: 12
$$\mathrm{prove}\:\mathrm{that}\:\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{\mathrm{k}\left(\mathrm{2k}\:+\:\mathrm{1}\right)}\:\:=\:\:\mathrm{2}\:−\:\mathrm{2ln}\left(\mathrm{2}\right) \\ $$
Question Number 63573 Answers: 0 Comments: 0
Question Number 63565 Answers: 0 Comments: 0
Question Number 63522 Answers: 0 Comments: 2
Question Number 63485 Answers: 1 Comments: 0
$$\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}−\mathrm{3}\right)+\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)=\mathrm{2}\boldsymbol{\mathrm{x}}−\mathrm{3} \\ $$$$\boldsymbol{\mathrm{F}}\left(\mathrm{2}\right)=\mathrm{0}. \\ $$$$\boldsymbol{\mathrm{F}}\left(−\mathrm{2}\right)=? \\ $$
Question Number 63474 Answers: 1 Comments: 0
$${let}\:{P}\left({x}\right)={x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+{b} \\ $$$$ \\ $$$${and}\:{Q}\left({x}\right)={x}^{\mathrm{2}} +{cx}+{d} \\ $$$$ \\ $$$${be}\:{to}\:{polynomials}\:{with}\:{real}\:{coefficient}\:{such}\:{that} \\ $$$$ \\ $$$${P}\left({x}\right)\:{Q}\left({x}\right)={Q}\left({P}\left({x}\right)\right) \\ $$$$ \\ $$$${find}\:{all}\:{the}\:{real}\:{roots}\:{of}\:{P}\left({Q}\left({x}\right)\right)=\mathrm{0} \\ $$
Pg 295 Pg 296 Pg 297 Pg 298 Pg 299 Pg 300 Pg 301 Pg 302 Pg 303 Pg 304
Terms of Service
Privacy Policy
Contact: info@tinkutara.com