Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 299

Question Number 71824    Answers: 2   Comments: 1

solve x^x^x^(2019) =2019

$${solve}\: \\ $$$${x}^{{x}^{{x}^{\mathrm{2019}} } } =\mathrm{2019} \\ $$

Question Number 71810    Answers: 0   Comments: 0

Question Number 71809    Answers: 1   Comments: 0

Question Number 71776    Answers: 1   Comments: 0

Question Number 71761    Answers: 0   Comments: 5

Find at least the first four non zero term in a power series expansion about x = 0 for a general solution to z′′ − x^2 z = 0

$$\mathrm{Find}\:\mathrm{at}\:\mathrm{least}\:\mathrm{the}\:\mathrm{first}\:\mathrm{four}\:\mathrm{non}\:\mathrm{zero}\:\mathrm{term}\:\mathrm{in}\:\mathrm{a}\:\mathrm{power} \\ $$$$\mathrm{series}\:\mathrm{expansion}\:\mathrm{about}\:\:\mathrm{x}\:\:=\:\:\mathrm{0}\:\:\mathrm{for}\:\mathrm{a}\:\mathrm{general}\:\mathrm{solution} \\ $$$$\mathrm{to}\:\:\:\:\mathrm{z}''\:\:−\:\:\mathrm{x}^{\mathrm{2}} \mathrm{z}\:\:\:=\:\:\mathrm{0} \\ $$

Question Number 71750    Answers: 0   Comments: 2

∫ cos^3 θ (1 − sin^3 θ) Using beta function

$$\int\:\mathrm{cos}^{\mathrm{3}} \theta\:\left(\mathrm{1}\:−\:\mathrm{sin}^{\mathrm{3}} \theta\right) \\ $$$$\mathrm{Using}\:\mathrm{beta}\:\mathrm{function} \\ $$

Question Number 71729    Answers: 1   Comments: 2

find dU if U=x^2 e^(x/y)

$${find}\:{dU}\:\:\:{if}\:\:\:{U}={x}^{\mathrm{2}} {e}^{\frac{{x}}{{y}}} \\ $$$$ \\ $$

Question Number 71756    Answers: 1   Comments: 0

A=((8+3(√(21))))^(1/3) + ((8−3(√(21))))^(1/3) find A

$${A}=\sqrt[{\mathrm{3}}]{\mathrm{8}+\mathrm{3}\sqrt{\mathrm{21}}}\:+\:\sqrt[{\mathrm{3}}]{\mathrm{8}−\mathrm{3}\sqrt{\mathrm{21}}} \\ $$$$ \\ $$$${find}\:{A} \\ $$

Question Number 71674    Answers: 1   Comments: 0

Question Number 71666    Answers: 1   Comments: 1

f:z→z f(x+y)=f(x)+f(y)+3(4xy−1) ,f(1)=0 ∀x,y ∈z evaluate f(19)

$${f}:{z}\rightarrow{z} \\ $$$$ \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right)+{f}\left({y}\right)+\mathrm{3}\left(\mathrm{4}{xy}−\mathrm{1}\right) \\ $$$$ \\ $$$$,{f}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$ \\ $$$$\forall{x},{y}\:\in{z} \\ $$$${evaluate}\:{f}\left(\mathrm{19}\right) \\ $$

Question Number 71633    Answers: 1   Comments: 0

let a,b,c ∈IR_+ show that (a+b)(a+c)≥2(√(abc(a+b+c)))

$$\mathrm{let}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\in\mathrm{IR}_{+} \\ $$$$\mathrm{show}\:\mathrm{that}\:\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}+\mathrm{c}\right)\geqslant\mathrm{2}\sqrt{\mathrm{abc}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)} \\ $$$$ \\ $$

Question Number 71534    Answers: 2   Comments: 0

a number consists of digits 1 and 2. the sum of its digits is 2018. if the number is multiplied with 5, the sum of the digits will be 10000. find how many digits this number has.

$${a}\:{number}\:{consists}\:{of}\:{digits}\:\mathrm{1}\:{and}\:\mathrm{2}. \\ $$$${the}\:{sum}\:{of}\:{its}\:{digits}\:{is}\:\mathrm{2018}. \\ $$$${if}\:{the}\:{number}\:{is}\:{multiplied}\:{with}\:\mathrm{5},\: \\ $$$${the}\:{sum}\:{of}\:{the}\:{digits}\:{will}\:{be}\:\mathrm{10000}. \\ $$$${find}\:{how}\:{many}\:{digits}\:{this}\:{number} \\ $$$${has}. \\ $$

Question Number 71533    Answers: 1   Comments: 0

Three interior angles of a nonagon are equal and the sum of the other six is 1050° Find the size of one of the equal angles.

$$\mathrm{Three}\:\mathrm{interior}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{nonagon}\:\mathrm{are} \\ $$$$\mathrm{equal}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{six}\:\mathrm{is}\:\mathrm{1050}° \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{size}\:\mathrm{of}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equal}\:\mathrm{angles}. \\ $$

Question Number 71518    Answers: 1   Comments: 8

Express (√(28)) as continued fraction

$$\mathrm{Express}\:\:\sqrt{\mathrm{28}}\:\:\mathrm{as}\:\mathrm{continued}\:\mathrm{fraction} \\ $$

Question Number 71448    Answers: 0   Comments: 1

find the domain f(x)=(1/(sin(sin(x))))

$${find}\:{the}\:{domain} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{sin}\left({sin}\left({x}\right)\right)} \\ $$

Question Number 71406    Answers: 0   Comments: 6

Hello Solve (x^2 )^(1/3) −3((x(x−1)))^(1/3) +2((x−1))^(1/3) =0

$$\mathrm{Hello}\: \\ $$$$\mathrm{Solve}\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} }−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{1}}=\mathrm{0} \\ $$

Question Number 71282    Answers: 4   Comments: 0

solve x(y+z)=27 y(z+x)=32 z(x+y)=35

$${solve} \\ $$$${x}\left({y}+{z}\right)=\mathrm{27} \\ $$$${y}\left({z}+{x}\right)=\mathrm{32} \\ $$$${z}\left({x}+{y}\right)=\mathrm{35} \\ $$

Question Number 71242    Answers: 3   Comments: 0

Given: (a/b) + (c/d) = (b/a) + (d/c) Show that, (a^2 /b^2 ) − (c^2 /d^2 ) = (b^2 /a^2 ) − (d^2 /c^2 )

$$\mathrm{Given}:\:\:\:\frac{\mathrm{a}}{\mathrm{b}}\:+\:\frac{\mathrm{c}}{\mathrm{d}}\:\:=\:\:\frac{\mathrm{b}}{\mathrm{a}}\:+\:\frac{\mathrm{d}}{\mathrm{c}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:−\:\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{d}^{\mathrm{2}} }\:\:=\:\:\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{c}^{\mathrm{2}} } \\ $$

Question Number 71196    Answers: 1   Comments: 0

the curve y = f(x), when f(x) is a quadratic expression has a maximum value point at (1,4). The curve touches the line 6x + y = 13. Find the value of x for which y = 8

$${the}\:{curve}\:{y}\:=\:{f}\left({x}\right),\:{when}\:{f}\left({x}\right)\:{is}\:{a}\:{quadratic}\:{expression}\:{has}\: \\ $$$${a}\:{maximum}\:{value}\:{point}\:{at}\:\left(\mathrm{1},\mathrm{4}\right).\:{The}\:{curve}\:{touches}\:{the}\:{line} \\ $$$$\mathrm{6}{x}\:+\:{y}\:=\:\mathrm{13}.\:{Find}\:{the}\:{value}\:{of}\:{x}\:{for}\:{which}\:{y}\:=\:\mathrm{8} \\ $$

Question Number 71172    Answers: 0   Comments: 2

find fhe range f(x)=(4/(1+(√x)))

$${find}\:{fhe}\:{range} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{\mathrm{4}}{\mathrm{1}+\sqrt{{x}}} \\ $$

Question Number 71147    Answers: 2   Comments: 1

Question Number 71117    Answers: 0   Comments: 0

Question Number 71114    Answers: 0   Comments: 0

Question Number 71089    Answers: 1   Comments: 0

((√((√2)−1)))^x +((√((√2)+1)))^x =4

$$\left(\sqrt{\sqrt{\mathrm{2}}−\mathrm{1}}\right)^{\mathrm{x}} +\left(\sqrt{\sqrt{\mathrm{2}}+\mathrm{1}}\right)^{\mathrm{x}} =\mathrm{4} \\ $$

Question Number 71082    Answers: 2   Comments: 0

prove that ∣ (√(∣x∣)) − (√(∣y∣)) ∣ ≤ (√(∣x−y∣))

$${prove}\:{that}\: \\ $$$$ \\ $$$$\mid\:\sqrt{\mid{x}\mid}\:−\:\sqrt{\mid{y}\mid}\:\mid\:\leqslant\:\sqrt{\mid{x}−{y}\mid}\: \\ $$$$ \\ $$

Question Number 71073    Answers: 3   Comments: 4

  Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com