Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 299

Question Number 71633    Answers: 1   Comments: 0

let a,b,c ∈IR_+ show that (a+b)(a+c)≥2(√(abc(a+b+c)))

$$\mathrm{let}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\in\mathrm{IR}_{+} \\ $$$$\mathrm{show}\:\mathrm{that}\:\left(\mathrm{a}+\mathrm{b}\right)\left(\mathrm{a}+\mathrm{c}\right)\geqslant\mathrm{2}\sqrt{\mathrm{abc}\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)} \\ $$$$ \\ $$

Question Number 71534    Answers: 2   Comments: 0

a number consists of digits 1 and 2. the sum of its digits is 2018. if the number is multiplied with 5, the sum of the digits will be 10000. find how many digits this number has.

$${a}\:{number}\:{consists}\:{of}\:{digits}\:\mathrm{1}\:{and}\:\mathrm{2}. \\ $$$${the}\:{sum}\:{of}\:{its}\:{digits}\:{is}\:\mathrm{2018}. \\ $$$${if}\:{the}\:{number}\:{is}\:{multiplied}\:{with}\:\mathrm{5},\: \\ $$$${the}\:{sum}\:{of}\:{the}\:{digits}\:{will}\:{be}\:\mathrm{10000}. \\ $$$${find}\:{how}\:{many}\:{digits}\:{this}\:{number} \\ $$$${has}. \\ $$

Question Number 71533    Answers: 1   Comments: 0

Three interior angles of a nonagon are equal and the sum of the other six is 1050° Find the size of one of the equal angles.

$$\mathrm{Three}\:\mathrm{interior}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{nonagon}\:\mathrm{are} \\ $$$$\mathrm{equal}\:\mathrm{and}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{six}\:\mathrm{is}\:\mathrm{1050}° \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{size}\:\mathrm{of}\:\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equal}\:\mathrm{angles}. \\ $$

Question Number 71518    Answers: 1   Comments: 8

Express (√(28)) as continued fraction

$$\mathrm{Express}\:\:\sqrt{\mathrm{28}}\:\:\mathrm{as}\:\mathrm{continued}\:\mathrm{fraction} \\ $$

Question Number 71448    Answers: 0   Comments: 1

find the domain f(x)=(1/(sin(sin(x))))

$${find}\:{the}\:{domain} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{\mathrm{1}}{{sin}\left({sin}\left({x}\right)\right)} \\ $$

Question Number 71406    Answers: 0   Comments: 6

Hello Solve (x^2 )^(1/3) −3((x(x−1)))^(1/3) +2((x−1))^(1/3) =0

$$\mathrm{Hello}\: \\ $$$$\mathrm{Solve}\:\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{2}} }−\mathrm{3}\sqrt[{\mathrm{3}}]{\mathrm{x}\left(\mathrm{x}−\mathrm{1}\right)}+\mathrm{2}\sqrt[{\mathrm{3}}]{\mathrm{x}−\mathrm{1}}=\mathrm{0} \\ $$

Question Number 71282    Answers: 4   Comments: 0

solve x(y+z)=27 y(z+x)=32 z(x+y)=35

$${solve} \\ $$$${x}\left({y}+{z}\right)=\mathrm{27} \\ $$$${y}\left({z}+{x}\right)=\mathrm{32} \\ $$$${z}\left({x}+{y}\right)=\mathrm{35} \\ $$

Question Number 71242    Answers: 3   Comments: 0

Given: (a/b) + (c/d) = (b/a) + (d/c) Show that, (a^2 /b^2 ) − (c^2 /d^2 ) = (b^2 /a^2 ) − (d^2 /c^2 )

$$\mathrm{Given}:\:\:\:\frac{\mathrm{a}}{\mathrm{b}}\:+\:\frac{\mathrm{c}}{\mathrm{d}}\:\:=\:\:\frac{\mathrm{b}}{\mathrm{a}}\:+\:\frac{\mathrm{d}}{\mathrm{c}} \\ $$$$\mathrm{Show}\:\mathrm{that},\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }\:−\:\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{d}^{\mathrm{2}} }\:\:=\:\:\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:−\:\frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{c}^{\mathrm{2}} } \\ $$

Question Number 71196    Answers: 1   Comments: 0

the curve y = f(x), when f(x) is a quadratic expression has a maximum value point at (1,4). The curve touches the line 6x + y = 13. Find the value of x for which y = 8

$${the}\:{curve}\:{y}\:=\:{f}\left({x}\right),\:{when}\:{f}\left({x}\right)\:{is}\:{a}\:{quadratic}\:{expression}\:{has}\: \\ $$$${a}\:{maximum}\:{value}\:{point}\:{at}\:\left(\mathrm{1},\mathrm{4}\right).\:{The}\:{curve}\:{touches}\:{the}\:{line} \\ $$$$\mathrm{6}{x}\:+\:{y}\:=\:\mathrm{13}.\:{Find}\:{the}\:{value}\:{of}\:{x}\:{for}\:{which}\:{y}\:=\:\mathrm{8} \\ $$

Question Number 71172    Answers: 0   Comments: 2

find fhe range f(x)=(4/(1+(√x)))

$${find}\:{fhe}\:{range} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{\mathrm{4}}{\mathrm{1}+\sqrt{{x}}} \\ $$

Question Number 71147    Answers: 2   Comments: 1

Question Number 71117    Answers: 0   Comments: 0

Question Number 71114    Answers: 0   Comments: 0

Question Number 71089    Answers: 1   Comments: 0

((√((√2)−1)))^x +((√((√2)+1)))^x =4

$$\left(\sqrt{\sqrt{\mathrm{2}}−\mathrm{1}}\right)^{\mathrm{x}} +\left(\sqrt{\sqrt{\mathrm{2}}+\mathrm{1}}\right)^{\mathrm{x}} =\mathrm{4} \\ $$

Question Number 71082    Answers: 2   Comments: 0

prove that ∣ (√(∣x∣)) − (√(∣y∣)) ∣ ≤ (√(∣x−y∣))

$${prove}\:{that}\: \\ $$$$ \\ $$$$\mid\:\sqrt{\mid{x}\mid}\:−\:\sqrt{\mid{y}\mid}\:\mid\:\leqslant\:\sqrt{\mid{x}−{y}\mid}\: \\ $$$$ \\ $$

Question Number 71073    Answers: 3   Comments: 4

Question Number 70997    Answers: 1   Comments: 0

Question Number 70969    Answers: 1   Comments: 0

Question Number 70920    Answers: 1   Comments: 2

i ! = ?

$$\mathrm{i}\:!\:\:=\:\:? \\ $$

Question Number 70768    Answers: 1   Comments: 1

Question Number 70679    Answers: 0   Comments: 2

Hi, i wanna learn more english. can someone help me? write please +584249229498

$${Hi},\:{i}\:{wanna}\:{learn}\:{more}\:{english}. \\ $$$${can}\:{someone}\:{help}\:{me}? \\ $$$${write}\:{please}\:+\mathrm{584249229498} \\ $$

Question Number 70659    Answers: 1   Comments: 0

find the range algrbraically f(x)=(√(x^2 −1))

$${find}\:{the}\:{range}\:{algrbraically} \\ $$$$ \\ $$$${f}\left({x}\right)=\sqrt{{x}^{\mathrm{2}} −\mathrm{1}} \\ $$

Question Number 70639    Answers: 0   Comments: 0

Question Number 70638    Answers: 1   Comments: 1

Question Number 70617    Answers: 1   Comments: 0

given that α and β are roots of the equation x^2 −5x + 4 =0 α>0 and β >0 find an equation whose roots are (√α) and (√β) how do i find (√(α )) + (√β)

$${given}\:{that}\:\:\alpha\:{and}\:\beta\:{are}\:{roots}\:{of}\:{the}\:{equation}\:{x}^{\mathrm{2}} −\mathrm{5}{x}\:+\:\mathrm{4}\:=\mathrm{0}\: \\ $$$$\alpha>\mathrm{0}\:{and}\:\beta\:>\mathrm{0} \\ $$$${find}\:{an}\:{equation}\:{whose}\:{roots}\:{are}\:\sqrt{\alpha}\:{and}\:\sqrt{\beta}\: \\ $$$$ \\ $$$${how}\:{do}\:{i}\:{find}\:\:\sqrt{\alpha\:}\:+\:\sqrt{\beta}\: \\ $$

Question Number 70598    Answers: 1   Comments: 0

If a,b,c ∈ ℜ and (a^2 /(b+c))+(b^2 /(c+a))+(c^2 /(a+b))=((12)/(a+b+c)) , (a/(b+c))+(b/(a+c))+(c/(a+b))=(4/3) then find a+b+c=?

$$\mathrm{If}\:\mathrm{a},\mathrm{b},\mathrm{c}\:\in\:\Re\:\mathrm{and}\:\frac{\mathrm{a}^{\mathrm{2}} }{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{c}+\mathrm{a}}+\frac{\mathrm{c}^{\mathrm{2}} }{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{12}}{\mathrm{a}+\mathrm{b}+\mathrm{c}} \\ $$$$,\:\frac{\mathrm{a}}{\mathrm{b}+\mathrm{c}}+\frac{\mathrm{b}}{\mathrm{a}+\mathrm{c}}+\frac{\mathrm{c}}{\mathrm{a}+\mathrm{b}}=\frac{\mathrm{4}}{\mathrm{3}}\:\mathrm{then}\:\mathrm{find}\:\mathrm{a}+\mathrm{b}+\mathrm{c}=? \\ $$

  Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com