Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 299

Question Number 69610    Answers: 0   Comments: 0

Question Number 69538    Answers: 0   Comments: 0

Hello Verry Nice Day for You Find Σ_(k≥0) (1/((8k+1)^2 ))

$${Hello}\:{Verry}\:{Nice}\:{Day}\:{for}\:\:{You} \\ $$$${Find}\:\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\mathrm{1}}{\left(\mathrm{8}{k}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$

Question Number 69586    Answers: 0   Comments: 0

x^5 −x^4 −x^3 −x^2 −x−1=0

$${x}^{\mathrm{5}} −{x}^{\mathrm{4}} −{x}^{\mathrm{3}} −{x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$

Question Number 69496    Answers: 0   Comments: 5

Question Number 69589    Answers: 0   Comments: 0

x^3 +px−ry+qz+a=0 y^3 +rx+qy−pz+b=0 z^3 −qx+py+rz+c=0 solve for x,y,z, in terms of p,q,r, a,b,c.

$${x}^{\mathrm{3}} +{px}−{ry}+{qz}+{a}=\mathrm{0} \\ $$$${y}^{\mathrm{3}} +{rx}+{qy}−{pz}+{b}=\mathrm{0} \\ $$$${z}^{\mathrm{3}} −{qx}+{py}+{rz}+{c}=\mathrm{0} \\ $$$${solve}\:{for}\:{x},{y},{z},\:{in}\:{terms}\:{of} \\ $$$${p},{q},{r},\:{a},{b},{c}. \\ $$

Question Number 69479    Answers: 0   Comments: 2

to Sir Aifour: we can construct polynomes of both 3^(rd) and 4^(th) degree in a way that the constants are ∈Z or ∈Q and the solutions are not trivial i.e. (t−α)(t+(α/2)−(√β))(t+(α/2)+(√β))=0∧t=x+(γ/3) ⇔ x^3 +γx^2 −(((3α^2 )/4)+β−(γ^2 /3))x−((α^3 /4)+((α^2 γ)/4)−αβ+((βγ)/3)−(γ^3 /(27)))=0 or the more complicated with sinus/cosinus (x−α−(√β)−(√γ)−(√δ))(x−α−(√β)+(√γ)+(√δ))(x−α+(√β)−(√γ)+(√δ))(x−α+(√β)+(√γ)−(√δ))=0 where all constants ∈Q if (√(βγδ))∈Q I could not find a similar construction for a polynome of 5^(th) degree, where the 5 roots are of comparable complexity [(x−a)(x−b−ci)(x−b+ci)(x−d−ei)(x−d+ei) doesn′t count] maybe you should at first focus on this

$$\mathrm{to}\:\mathrm{Sir}\:\mathrm{Aifour}: \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{construct}\:\mathrm{polynomes}\:\mathrm{of}\:\mathrm{both}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{and} \\ $$$$\mathrm{4}^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{in}\:\mathrm{a}\:\mathrm{way}\:\mathrm{that}\:\mathrm{the}\:\mathrm{constants}\:\mathrm{are} \\ $$$$\in\mathbb{Z}\:\mathrm{or}\:\in\mathbb{Q}\:\mathrm{and}\:\mathrm{the}\:\mathrm{solutions}\:\mathrm{are}\:\mathrm{not}\:\mathrm{trivial} \\ $$$$\mathrm{i}.\mathrm{e}. \\ $$$$\left({t}−\alpha\right)\left({t}+\frac{\alpha}{\mathrm{2}}−\sqrt{\beta}\right)\left({t}+\frac{\alpha}{\mathrm{2}}+\sqrt{\beta}\right)=\mathrm{0}\wedge{t}={x}+\frac{\gamma}{\mathrm{3}} \\ $$$$\Leftrightarrow \\ $$$${x}^{\mathrm{3}} +\gamma{x}^{\mathrm{2}} −\left(\frac{\mathrm{3}\alpha^{\mathrm{2}} }{\mathrm{4}}+\beta−\frac{\gamma^{\mathrm{2}} }{\mathrm{3}}\right){x}−\left(\frac{\alpha^{\mathrm{3}} }{\mathrm{4}}+\frac{\alpha^{\mathrm{2}} \gamma}{\mathrm{4}}−\alpha\beta+\frac{\beta\gamma}{\mathrm{3}}−\frac{\gamma^{\mathrm{3}} }{\mathrm{27}}\right)=\mathrm{0} \\ $$$$\mathrm{or}\:\mathrm{the}\:\mathrm{more}\:\mathrm{complicated}\:\mathrm{with}\:\mathrm{sinus}/\mathrm{cosinus} \\ $$$$ \\ $$$$\left({x}−\alpha−\sqrt{\beta}−\sqrt{\gamma}−\sqrt{\delta}\right)\left({x}−\alpha−\sqrt{\beta}+\sqrt{\gamma}+\sqrt{\delta}\right)\left({x}−\alpha+\sqrt{\beta}−\sqrt{\gamma}+\sqrt{\delta}\right)\left({x}−\alpha+\sqrt{\beta}+\sqrt{\gamma}−\sqrt{\delta}\right)=\mathrm{0} \\ $$$$\mathrm{where}\:\mathrm{all}\:\mathrm{constants}\:\in\mathbb{Q}\:\mathrm{if}\:\sqrt{\beta\gamma\delta}\in\mathbb{Q} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{could}\:\mathrm{not}\:\mathrm{find}\:\mathrm{a}\:\mathrm{similar}\:\mathrm{construction}\:\mathrm{for} \\ $$$$\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{5}^{\mathrm{th}} \:\mathrm{degree},\:\mathrm{where}\:\mathrm{the}\:\mathrm{5}\:\mathrm{roots} \\ $$$$\mathrm{are}\:\mathrm{of}\:\mathrm{comparable}\:\mathrm{complexity} \\ $$$$\left[\left({x}−{a}\right)\left({x}−{b}−{c}\mathrm{i}\right)\left({x}−{b}+{c}\mathrm{i}\right)\left({x}−{d}−{e}\mathrm{i}\right)\left({x}−{d}+{e}\mathrm{i}\right)\right. \\ $$$$\left.\mathrm{doesn}'\mathrm{t}\:\mathrm{count}\right] \\ $$$$\mathrm{maybe}\:\mathrm{you}\:\mathrm{should}\:\mathrm{at}\:\mathrm{first}\:\mathrm{focus}\:\mathrm{on}\:\mathrm{this} \\ $$

Question Number 69423    Answers: 0   Comments: 1

Question Number 69418    Answers: 0   Comments: 0

Question Number 69416    Answers: 1   Comments: 1

Question Number 69413    Answers: 0   Comments: 1

Question Number 69373    Answers: 0   Comments: 2

x^3 −3x−3

$${x}^{\mathrm{3}} −\mathrm{3}{x}−\mathrm{3} \\ $$

Question Number 69412    Answers: 1   Comments: 1

Question Number 69411    Answers: 0   Comments: 1

Question Number 69293    Answers: 0   Comments: 3

Question Number 69297    Answers: 1   Comments: 1

Question Number 69296    Answers: 0   Comments: 6

Question Number 69276    Answers: 0   Comments: 3

f(x)=Σ_(k=1) ^n ∣x+k∣ (1) find the values of x such that f(x) is minumum. (2) fund the roots of f(x)−m=0 as example you can set n=100, m=2500.

$${f}\left({x}\right)=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mid{x}+{k}\mid \\ $$$$\left(\mathrm{1}\right)\:{find}\:{the}\:{values}\:{of}\:{x}\:{such}\:{that}\:{f}\left({x}\right)\: \\ $$$${is}\:{minumum}. \\ $$$$\left(\mathrm{2}\right)\:{fund}\:{the}\:{roots}\:{of}\:{f}\left({x}\right)−{m}=\mathrm{0} \\ $$$$ \\ $$$${as}\:{example}\:{you}\:{can}\:{set}\:{n}=\mathrm{100},\:{m}=\mathrm{2500}. \\ $$

Question Number 69230    Answers: 0   Comments: 0

Question Number 69226    Answers: 0   Comments: 0

Question Number 69222    Answers: 0   Comments: 1

Question Number 69201    Answers: 2   Comments: 0

Question Number 69162    Answers: 1   Comments: 0

Find the local extreme values of the function : f(x,y)= xy−x^2 −y^2 −2x−2y+4.

$${Find}\:{the}\:{local}\:{extreme}\:{values}\:{of} \\ $$$${the}\:{function}\:: \\ $$$${f}\left({x},{y}\right)=\:{xy}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{2}{y}+\mathrm{4}. \\ $$

Question Number 69143    Answers: 0   Comments: 0

x^4 +ax^3 +bx^2 +cx+d=0 let x=f(t) linear perhaps t^4 +At^3 +Bt^2 +Ct+D=0 can we have 4AB=A^3 +8C solving at most a degree three polynomial ?

$${x}^{\mathrm{4}} +{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}=\mathrm{0} \\ $$$${let}\:\:{x}={f}\left({t}\right)\:\:{linear}\:{perhaps} \\ $$$${t}^{\mathrm{4}} +{At}^{\mathrm{3}} +{Bt}^{\mathrm{2}} +{Ct}+{D}=\mathrm{0} \\ $$$${can}\:{we}\:{have}\:\: \\ $$$$\:\:\:\mathrm{4}{AB}={A}^{\mathrm{3}} +\mathrm{8}{C}\:\:{solving}\:{at}\:{most} \\ $$$${a}\:{degree}\:{three}\:{polynomial}\:? \\ $$

Question Number 69176    Answers: 0   Comments: 1

difference of two complementary angles is 102^° .find two angles

$${difference}\:{of}\:{two}\:{complementary}\: \\ $$$${angles}\:{is}\:\mathrm{102}^{°} .{find}\:{two}\:{angles} \\ $$

Question Number 69072    Answers: 0   Comments: 0

Question Number 69064    Answers: 1   Comments: 3

  Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299      Pg 300      Pg 301      Pg 302      Pg 303   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com