Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 295
Question Number 73649 Answers: 1 Comments: 2
$${find}\:{the}\:{range} \\ $$$$ \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{\mathrm{6}−\sqrt{{x}+\mathrm{2}}} \\ $$
Question Number 73574 Answers: 0 Comments: 1
Question Number 73619 Answers: 0 Comments: 16
Question Number 73468 Answers: 1 Comments: 0
$$\mathrm{soit}\:\mathrm{le}\:\mathrm{systeme}\:\mathrm{suivant} \\ $$$$\begin{cases}{\mathrm{2s}+\mathrm{4c}+\mathrm{3t}=\mathrm{700}}\\{\mathrm{3s}+\mathrm{2c}+\mathrm{2t}=\mathrm{500}}\end{cases} \\ $$$$\:\:\mathrm{8s}+\mathrm{7c}+\mathrm{8t}=...?... \\ $$$$\mathrm{comment}\:\mathrm{determiner}\:\mathrm{le}\:\mathrm{resultat}\:...?...\: \\ $$$$\mathrm{de}\:\mathrm{la}\:\mathrm{3}^{\mathrm{e}} \mathrm{equation}\:? \\ $$
Question Number 73399 Answers: 3 Comments: 1
$$\begin{cases}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{65}}\\{\left({x}−\mathrm{1}\right)\left({y}−\mathrm{1}\right)=\mathrm{17}}\end{cases} \\ $$$$ \\ $$$${please}\:{help}\:{me}\:{to}\:{solve}\:{it}... \\ $$
Question Number 73378 Answers: 0 Comments: 3
$${Hello}\:,{i}\:{shar}\:{withe}\:{you}\:{nice}\:{problem}\: \\ $$$${show}\:{that}\:\forall{k}\in\mathbb{N}^{\ast} \:\exists{n}\in\mathbb{N}\:{such}\:{that} \\ $$$${k}\leqslant\underset{{j}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{j}}<{k}+\mathrm{1} \\ $$$${have}\:{a}\:{very}\:{Nice}\:{day} \\ $$$$ \\ $$
Question Number 73356 Answers: 0 Comments: 2
Question Number 73308 Answers: 0 Comments: 6
$${what}\:{are}\:{the}\:{solutions} \\ $$$${of}\:\sqrt{\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}}={n}\:{where}\:{n}\in\mathbb{N} \\ $$
Question Number 73274 Answers: 0 Comments: 2
Question Number 73273 Answers: 1 Comments: 0
Question Number 73131 Answers: 0 Comments: 2
$$\boldsymbol{\mathrm{solve}}\:\boldsymbol{\mathrm{for}}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{in}}\:\boldsymbol{\mathrm{terms}}\:\boldsymbol{\mathrm{of}}:\:\:\boldsymbol{\mathrm{a}}\in\boldsymbol{\mathrm{R}}\:. \\ $$$$\:\:\:\boldsymbol{\mathrm{x}}+\sqrt{\boldsymbol{\mathrm{x}}}+\sqrt{\boldsymbol{\mathrm{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{a}}}+\sqrt{\boldsymbol{\mathrm{x}}−\boldsymbol{\mathrm{a}}^{\mathrm{2}} }=\boldsymbol{\mathrm{a}}^{\mathrm{2}} \\ $$
Question Number 73113 Answers: 1 Comments: 3
Question Number 73042 Answers: 1 Comments: 0
$${prove}\:{that}\:{for}\:\left({n},{p}\right)\in{N}^{\bigstar^{\mathrm{2}} } \:\:\:\sum_{{k}=\mathrm{0}} ^{{p}\:} \:{k}\:{C}_{{n}} ^{{p}−{k}} \:{C}_{{n}} ^{{k}} \:={n}\:{C}_{\mathrm{2}{n}−\mathrm{1}} ^{{p}−\mathrm{1}} \\ $$$${conclude}\:{the}\:{value}\:{of}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{k}\:\left({C}_{{n}} ^{{k}} \right)^{\mathrm{2}} \\ $$
Question Number 73041 Answers: 1 Comments: 1
$${prove}\:{that}\:\forall{n}\in\:{N}\:\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\left(−\mathrm{1}\right)^{{k}} \:\left({C}_{\mathrm{2}{n}} ^{{k}} \right)^{\mathrm{2}} \:=\left(−\mathrm{1}\right)^{{n}} \:{C}_{\mathrm{2}{n}} ^{{n}} \\ $$
Question Number 73040 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\forall\left({n},{p}\right)\in{N}^{\bigstar} ×{N} \\ $$$$\left.\mathrm{1}\right)\sum_{{k}=\mathrm{0}} ^{{p}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}} \:=\left(−\mathrm{1}\right)^{{p}} \:{C}_{{n}−\mathrm{1}} ^{{p}} \\ $$$$\left.\mathrm{2}\right)\forall\left({p},{q}\right)\in{N}^{\mathrm{2}} \:\:\:\:\sum_{{k}=\mathrm{0}} ^{{p}} \:{C}_{{p}+{q}} ^{{k}} \:{C}_{{p}+{q}−{k}} ^{{p}−{k}} \:\:=\mathrm{2}^{{p}} \:{C}_{{p}+{q}} ^{{p}} \\ $$
Question Number 73039 Answers: 1 Comments: 0
$${let}\:{U}_{{n}} =\frac{{n}}{\mathrm{2}}\:{if}\:{n}\:{even}\:{and}\:{U}_{{n}} =\frac{{n}−\mathrm{1}}{\mathrm{2}}\:{if}\:{n}\:{odd}\:{let}\:{f}\left({n}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} {U}_{{k}} \\ $$$${prove}\:{that}\:\forall\left({x},{y}\right)\in{N}^{\mathrm{2}} \:\:\:\:{f}\left({x}+{y}\right)−{f}\left({x}−{y}\right)={xy} \\ $$
Question Number 73036 Answers: 1 Comments: 3
$$\left.{calculate}\:\mathrm{1}\right)\:\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}^{\mathrm{2}} \left({n}+\mathrm{1}−{k}\right) \\ $$$$\left.\mathrm{2}\right)\sum_{\mathrm{1}\leqslant{i}\leqslant{j}\leqslant{n}} \:{ij} \\ $$
Question Number 73035 Answers: 0 Comments: 0
$${prove}\:{that}\:\:\forall{n}\in{N}^{\bigstar} \:\:\:\:\:\mathrm{2}!\mathrm{4}!....\left(\mathrm{2}{n}\right)!\geqslant\left\{\left({n}+\mathrm{1}\right)!\right\}^{{n}} \\ $$
Question Number 73034 Answers: 1 Comments: 1
$${calculate}\:{U}_{{n}} =\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{{k}}{\left({k}+\mathrm{1}\right)!} \\ $$
Question Number 73033 Answers: 1 Comments: 0
$${solve}\:{inside}\:{N}^{\mathrm{2}} \:\:\:\:{x}\left({x}+\mathrm{1}\right)=\mathrm{4}{y}\left({y}+\mathrm{1}\right) \\ $$
Question Number 73032 Answers: 1 Comments: 0
$${find}\:{x}\:{from}\:{n}\:\:/\:\exists{n}\in{N}^{{n}} \:\:\:\:{and}\:\mathrm{1}+{x}+{x}^{\mathrm{2}} \:+{x}^{\mathrm{3}} \:+{x}^{\mathrm{4}} ={n}^{\mathrm{2}} \\ $$
Question Number 73031 Answers: 0 Comments: 0
$${solve}\:{inside}\:{N}^{\mathrm{2}} \:\:\:\mathrm{3}{x}^{\mathrm{3}} \:+{xy}\:+\mathrm{4}{y}^{\mathrm{3}} \:=\mathrm{349} \\ $$
Question Number 73029 Answers: 1 Comments: 0
$${prove}\:{that}\:\:\forall\left({n},{p},{q}\right)\in{N}^{\mathrm{3}} \:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{p}} ^{{k}} \:{C}_{{q}} ^{{n}−{k}} \:\:\:={C}_{{p}+{q}} ^{{n}} \\ $$$${conclude}\:{that}\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\left({C}_{{n}} ^{{k}} \right)^{\mathrm{2}} \:={C}_{\mathrm{2}{n}} ^{{n}} \\ $$
Question Number 73028 Answers: 2 Comments: 0
$${calculate}\:\sum_{\mathrm{1}\leqslant{i}\leqslant{n}\:{and}\:\mathrm{1}\leqslant{j}\leqslant{n}} \:\:{min}\left({i},{j}\right) \\ $$
Question Number 73027 Answers: 1 Comments: 0
$${x}\:{and}\:{y}\:{are}\:{reals}\left({or}\:{complex}\right)\:{let}\:{put}\:{x}^{\left(\mathrm{0}\right)} =\mathrm{1}\:,{x}^{\left(\mathrm{1}\right)} ={x} \\ $$$${x}^{\left(\mathrm{2}\right)} ={x}\left({x}−\mathrm{1}\right).....{x}^{\left({n}\right)} ={x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)...\left({x}−{n}+\mathrm{1}\right){prove}\:{that} \\ $$$$\left({x}+{y}\right)^{\left({n}\right)} =\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{x}^{\left({n}−{k}\right)} {y}^{\left({k}\right)} \\ $$
Question Number 73021 Answers: 0 Comments: 0
Pg 290 Pg 291 Pg 292 Pg 293 Pg 294 Pg 295 Pg 296 Pg 297 Pg 298 Pg 299
Terms of Service
Privacy Policy
Contact: info@tinkutara.com