Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 295

Question Number 74615    Answers: 2   Comments: 0

Question Number 74614    Answers: 1   Comments: 0

Question Number 74611    Answers: 1   Comments: 0

Question Number 74609    Answers: 0   Comments: 1

.

$$. \\ $$

Question Number 74554    Answers: 1   Comments: 0

Find the superimum of the set {(n^2 /2^n )}

$$\boldsymbol{{Find}}\:\boldsymbol{{the}}\:\boldsymbol{{superimum}}\:\boldsymbol{{of}}\:\boldsymbol{{the}}\:\boldsymbol{{set}}\:\left\{\frac{\boldsymbol{{n}}^{\mathrm{2}} }{\mathrm{2}^{\boldsymbol{{n}}} }\right\} \\ $$

Question Number 74412    Answers: 0   Comments: 0

a,b,c are given real constants. p,q,r,t are unknowns from which we can choose values of two of them (non zero) and have to determine the other two (non zero), obeying two equations given below p^2 +q(1+bq)t^2 +q(ap+br)t +r(1+bq)t+r(ap+br) = 0 pt+q(a+cq)t^2 +r(a+cq)t +cqrt+cr^2 = 0 Can this be done solving a quadratic eq. and none higher..?

$${a},{b},{c}\:{are}\:{given}\:{real}\:{constants}. \\ $$$${p},{q},{r},{t}\:{are}\:{unknowns}\:{from}\:{which} \\ $$$${we}\:{can}\:{choose}\:{values}\:{of}\:{two}\:{of} \\ $$$${them}\:\left({non}\:{zero}\right)\:{and}\:{have}\:{to}\: \\ $$$${determine}\:{the}\:{other}\:{two}\:\left({non}\:{zero}\right), \\ $$$${obeying}\:\:{two}\:{equations}\:{given}\:{below} \\ $$$$\:{p}^{\mathrm{2}} +{q}\left(\mathrm{1}+{bq}\right){t}^{\mathrm{2}} +{q}\left({ap}+{br}\right){t} \\ $$$$\:\:\:\:\:+{r}\left(\mathrm{1}+{bq}\right){t}+{r}\left({ap}+{br}\right)\:=\:\mathrm{0} \\ $$$${pt}+{q}\left({a}+{cq}\right){t}^{\mathrm{2}} +{r}\left({a}+{cq}\right){t} \\ $$$$\:\:\:\:+{cqrt}+{cr}^{\mathrm{2}} =\:\mathrm{0} \\ $$$${Can}\:{this}\:{be}\:{done}\:{solving}\:{a} \\ $$$${quadratic}\:{eq}.\:{and}\:{none}\:{higher}..? \\ $$

Question Number 74329    Answers: 1   Comments: 1

Solve : ax+by=r bx−ay=s

$${Solve}\:: \\ $$$${ax}+{by}={r} \\ $$$${bx}−{ay}={s} \\ $$

Question Number 74266    Answers: 0   Comments: 0

please kindly help me with the solutions to these question?very urgent please (1) if dy=x^3 dx. find the equation of y in terms of x if the curve passes through (1,1) 2) Given that the volume v(t) of cell at a time t changes according to ((dV(t))/dt)= sin t, with v(t)=4. find v(t) 3) Given (dP/dt) + 3P = 0. determine P (t) if p(0)= 4 4) Radium decomposes at a rate proportion to the amount present. if the half−life of the radium is 1000 years. what is the percentage lost in 100 years? 5) Calculate the pressure of a gas after phase transition at 171°K from 101.3kPa pressure at 472°K taking R = 0.1886kJ\kgK and L = 35.73kg

$${please}\:{kindly}\:{help}\:{me}\:{with}\:{the}\:{solutions}\:{to}\:{these}\:{question}?{very}\:{urgent}\:{please}\:\left(\mathrm{1}\right)\:{if}\:{dy}={x}^{\mathrm{3}} {dx}.\:{find}\:{the}\:{equation}\:{of}\:{y}\:{in}\:{terms}\:{of}\:{x} \\ $$$$\:{if}\:{the}\:{curve}\:{passes}\:{through}\:\left(\mathrm{1},\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right)\:{Given}\:{that}\:{the}\:{volume}\:{v}\left({t}\right)\:{of}\:{cell}\:{at}\:{a}\:{time}\:{t}\:{changes}\:{according}\:{to} \\ $$$$\frac{{dV}\left({t}\right)}{{dt}}=\:{sin}\:{t},\:{with}\:{v}\left({t}\right)=\mathrm{4}.\:{find}\:{v}\left({t}\right) \\ $$$$\left.\mathrm{3}\right)\:{Given}\:\frac{{dP}}{{dt}}\:+\:\mathrm{3}{P}\:=\:\mathrm{0}.\:{determine}\:{P}\:\left({t}\right)\: \\ $$$${if}\:{p}\left(\mathrm{0}\right)=\:\mathrm{4} \\ $$$$\left.\mathrm{4}\right)\:{Radium}\:{decomposes}\:{at}\:{a}\:{rate}\:{proportion}\:{to}\:{the}\:{amount}\: \\ $$$${present}.\:{if}\:{the}\:{half}−{life}\:{of}\:{the}\:{radium}\:{is} \\ $$$$\mathrm{1000}\:{years}.\:{what}\:{is}\:{the}\:{percentage}\:{lost}\:{in}\:\mathrm{100}\:{years}? \\ $$$$\left.\mathrm{5}\right)\:{Calculate}\:{the}\:{pressure}\:{of}\:{a}\:{gas}\:{after}\:{phase} \\ $$$${transition}\:{at}\:\mathrm{171}°{K}\:{from}\:\mathrm{101}.\mathrm{3}{kPa} \\ $$$${pressure}\:{at}\:\mathrm{472}°{K}\:{taking}\:{R}\:=\:\mathrm{0}.\mathrm{1886}{kJ}\backslash{kgK}\:{and}\:{L}\:=\:\mathrm{35}.\mathrm{73}{kg} \\ $$

Question Number 74213    Answers: 2   Comments: 1

Question Number 74209    Answers: 1   Comments: 0

Question Number 74196    Answers: 0   Comments: 1

solve for x: 4^x +6^x =9^x

$${solve}\:{for}\:{x}: \\ $$$$\mathrm{4}^{{x}} +\mathrm{6}^{{x}} =\mathrm{9}^{{x}} \\ $$

Question Number 74164    Answers: 2   Comments: 0

factorize 6x^2 −11xy −10y^2

$${factorize} \\ $$$$\mathrm{6}{x}^{\mathrm{2}} \:−\mathrm{11}{xy}\:−\mathrm{10}{y}^{\mathrm{2}} \\ $$

Question Number 74168    Answers: 3   Comments: 1

Question Number 74148    Answers: 1   Comments: 0

{ ((−x(√3)+2my(√2)=((√3)/3))),((2mx−3y(√6)=1)) :} help me solve it.

$$\begin{cases}{−{x}\sqrt{\mathrm{3}}+\mathrm{2}{my}\sqrt{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}}\\{\mathrm{2}{mx}−\mathrm{3}{y}\sqrt{\mathrm{6}}=\mathrm{1}}\end{cases}\:\:\:\:\:\: \\ $$$$ \\ $$$${help}\:{me}\:{solve}\:{it}. \\ $$

Question Number 74129    Answers: 1   Comments: 0

2C_4 ^n = 35C_3 ^(n/2) ⇒ n = ?

$$\mathrm{2}\boldsymbol{{C}}_{\mathrm{4}} ^{\boldsymbol{{n}}} \:=\:\mathrm{35}\boldsymbol{{C}}_{\mathrm{3}} ^{\frac{\boldsymbol{{n}}}{\mathrm{2}}} \: \\ $$$$\Rightarrow\:\boldsymbol{{n}}\:=\:? \\ $$

Question Number 74121    Answers: 0   Comments: 1

Factor the polynomial ((c/2))x^2 +(b−((3c)/2))x+(c−b+a)

$$\mathrm{Factor}\:\mathrm{the}\:\mathrm{polynomial} \\ $$$$\left(\frac{{c}}{\mathrm{2}}\right){x}^{\mathrm{2}} +\left({b}−\frac{\mathrm{3}{c}}{\mathrm{2}}\right){x}+\left({c}−{b}+{a}\right) \\ $$

Question Number 74111    Answers: 1   Comments: 1

Question Number 74109    Answers: 1   Comments: 3

Question Number 74063    Answers: 0   Comments: 0

Question Number 74024    Answers: 1   Comments: 1

{ ((h^2 +y^2 +(k−z)^2 =s^2 )),((a^2 +(b−y)^2 +z^2 =s^2 )),((ah+y(y−b)+z(z−k)=0)),((((h+a)/2)+yz−(b−y)(k−z)=1)),((b+a(k−z)+hz=1)),((k+h(b−y)+ay=1)) :} Find s_(min) or at least express s=f(y) or g(z).

$$\begin{cases}{{h}^{\mathrm{2}} +{y}^{\mathrm{2}} +\left({k}−{z}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} }\\{{a}^{\mathrm{2}} +\left({b}−{y}\right)^{\mathrm{2}} +{z}^{\mathrm{2}} ={s}^{\mathrm{2}} }\\{{ah}+{y}\left({y}−{b}\right)+{z}\left({z}−{k}\right)=\mathrm{0}}\\{\frac{{h}+{a}}{\mathrm{2}}+{yz}−\left({b}−{y}\right)\left({k}−{z}\right)=\mathrm{1}}\\{{b}+{a}\left({k}−{z}\right)+{hz}=\mathrm{1}}\\{{k}+{h}\left({b}−{y}\right)+{ay}=\mathrm{1}}\end{cases} \\ $$$${Find}\:\:{s}_{{min}} \:{or}\:{at}\:{least}\:{express} \\ $$$$\:{s}={f}\left({y}\right)\:{or}\:{g}\left({z}\right). \\ $$

Question Number 74006    Answers: 1   Comments: 1

If 3x^2 e^(log _x 27) =27000 then find x

$${If}\:\mathrm{3}{x}^{\mathrm{2}} {e}^{\mathrm{log}\:_{{x}} \mathrm{27}} =\mathrm{27000}\:{then}\:{find}\:{x} \\ $$

Question Number 74339    Answers: 0   Comments: 2

x^3 +ax^2 +bx+c=0 Let x=((pt+q)/(t+1)) p^3 t^3 +3p^2 qt^2 +3pq^2 t+q^3 +a(t+1)(p^2 t^2 +2pqt+q^2 ) +b(pt+q)(t^2 +2t+1) +c(t^3 +3t^2 +3t+1) = 0 ⇒ (p^3 +ap^2 +bp+c)t^3 +(3p^2 q+ap^2 +2apq+bq+2bp+3c)t^2 +(3q^2 p+aq^2 +2apq+bp+2bq+3c)t +(q^3 +aq^2 +bq+c) = 0 Let coeffs. of t^2 and t be zero. Subtracting and adding them 3pq+a(p+q)+b=0 & 3pq(p+q)+a{(p+q)^2 −2pq} +4apq+3b(p+q)+6c = 0 lets call pq=m , p+q=s ⇒ 3m+as+b=0 ....(i) 3ms+a(s^2 −2m)+4am+3bs+6c=0 ⇒ am+bs+3c=0 ....(ii) ⇒ s=((9c−ab)/(a^2 −3b)) ; m=((b^2 −3ac)/(a^2 −3b)) Now p,q are roots of eq. z^2 −sz+m=0 p,q = (s/2)±(√((s^2 /4)−m)) t^3 =−(((q^3 +aq^2 +bq+c)/(p^3 +ap^2 +bq+c))) (t≠−1) x=((pt+q)/(t+1)) .

$${x}^{\mathrm{3}} +{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${Let}\:\:\:{x}=\frac{{pt}+{q}}{{t}+\mathrm{1}} \\ $$$${p}^{\mathrm{3}} {t}^{\mathrm{3}} +\mathrm{3}{p}^{\mathrm{2}} {qt}^{\mathrm{2}} +\mathrm{3}{pq}^{\mathrm{2}} {t}+{q}^{\mathrm{3}} \\ $$$$+{a}\left({t}+\mathrm{1}\right)\left({p}^{\mathrm{2}} {t}^{\mathrm{2}} +\mathrm{2}{pqt}+{q}^{\mathrm{2}} \right) \\ $$$$+{b}\left({pt}+{q}\right)\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}\right) \\ $$$$+{c}\left({t}^{\mathrm{3}} +\mathrm{3}{t}^{\mathrm{2}} +\mathrm{3}{t}+\mathrm{1}\right)\:\:\:\:=\:\:\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\:\:\left({p}^{\mathrm{3}} +{ap}^{\mathrm{2}} +{bp}+{c}\right){t}^{\mathrm{3}} \\ $$$$+\left(\mathrm{3}{p}^{\mathrm{2}} {q}+{ap}^{\mathrm{2}} +\mathrm{2}{apq}+{bq}+\mathrm{2}{bp}+\mathrm{3}{c}\right){t}^{\mathrm{2}} \\ $$$$+\left(\mathrm{3}{q}^{\mathrm{2}} {p}+{aq}^{\mathrm{2}} +\mathrm{2}{apq}+{bp}+\mathrm{2}{bq}+\mathrm{3}{c}\right){t} \\ $$$$+\left({q}^{\mathrm{3}} +{aq}^{\mathrm{2}} +{bq}+{c}\right)\:=\:\mathrm{0} \\ $$$${Let}\:{coeffs}.\:{of}\:{t}^{\mathrm{2}} \:{and}\:{t}\:{be}\:{zero}. \\ $$$${Subtracting}\:{and}\:{adding}\:{them} \\ $$$$\:\mathrm{3}{pq}+{a}\left({p}+{q}\right)+{b}=\mathrm{0}\:\:\:\& \\ $$$$\mathrm{3}{pq}\left({p}+{q}\right)+{a}\left\{\left({p}+{q}\right)^{\mathrm{2}} −\mathrm{2}{pq}\right\} \\ $$$$\:+\mathrm{4}{apq}+\mathrm{3}{b}\left({p}+{q}\right)+\mathrm{6}{c}\:=\:\mathrm{0} \\ $$$${lets}\:{call}\:\:{pq}={m}\:,\:\:{p}+{q}={s}\:\:\Rightarrow \\ $$$$\:\:\mathrm{3}{m}+{as}+{b}=\mathrm{0}\:\:\:\:....\left({i}\right) \\ $$$$\mathrm{3}{ms}+{a}\left({s}^{\mathrm{2}} −\mathrm{2}{m}\right)+\mathrm{4}{am}+\mathrm{3}{bs}+\mathrm{6}{c}=\mathrm{0} \\ $$$$\Rightarrow\:{am}+{bs}+\mathrm{3}{c}=\mathrm{0}\:\:\:\:....\left({ii}\right) \\ $$$$\Rightarrow\:\:{s}=\frac{\mathrm{9}{c}−{ab}}{{a}^{\mathrm{2}} −\mathrm{3}{b}}\:\:\:;\:\:{m}=\frac{{b}^{\mathrm{2}} −\mathrm{3}{ac}}{{a}^{\mathrm{2}} −\mathrm{3}{b}} \\ $$$$\:{Now}\:\:{p},{q}\:\:{are}\:{roots}\:{of}\:{eq}. \\ $$$$\:\:\:{z}^{\mathrm{2}} −{sz}+{m}=\mathrm{0} \\ $$$$\:\:\:{p},{q}\:=\:\frac{{s}}{\mathrm{2}}\pm\sqrt{\frac{{s}^{\mathrm{2}} }{\mathrm{4}}−{m}} \\ $$$$\:\:{t}^{\mathrm{3}} =−\left(\frac{{q}^{\mathrm{3}} +{aq}^{\mathrm{2}} +{bq}+{c}}{{p}^{\mathrm{3}} +{ap}^{\mathrm{2}} +{bq}+{c}}\right)\:\:\:\:\:\left({t}\neq−\mathrm{1}\right) \\ $$$$\:\:\:{x}=\frac{{pt}+{q}}{{t}+\mathrm{1}}\:. \\ $$

Question Number 73775    Answers: 0   Comments: 0

Question Number 73766    Answers: 3   Comments: 0

{ (((1/(x−1))=(2/(y−2))=(3/(z−3)))),((x+2y+3z=56)) :} please help me to solve it in R^3

$$\begin{cases}{\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}=\frac{\mathrm{2}}{\mathrm{y}−\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{z}−\mathrm{3}}}\\{\mathrm{x}+\mathrm{2y}+\mathrm{3z}=\mathrm{56}}\end{cases} \\ $$$$ \\ $$$$\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{it}\:\mathrm{in}\:\mathbb{R}^{\mathrm{3}} \\ $$

Question Number 73679    Answers: 0   Comments: 1

We have updated backend code to disallow delete of question which are already answered or commented.

$$\mathrm{We}\:\mathrm{have}\:\mathrm{updated}\:\mathrm{backend}\:\mathrm{code}\:\mathrm{to}\: \\ $$$$\mathrm{disallow}\:\mathrm{delete}\:\mathrm{of}\:\mathrm{question}\:\mathrm{which}\:\mathrm{are} \\ $$$$\mathrm{already}\:\mathrm{answered}\:\mathrm{or}\:\mathrm{commented}. \\ $$$$ \\ $$

Question Number 73665    Answers: 1   Comments: 0

if cos^2 (θ)=((m^2 −1)/3) , tan^3 ((θ/2))=tan(a) prove that ((cos^2 (a)))^(1/3) + ((sin^2 (a)))^(1/3) = ((((2/m))^2 ))^(1/3)

$${if} \\ $$$$ \\ $$$${cos}^{\mathrm{2}} \left(\theta\right)=\frac{{m}^{\mathrm{2}} −\mathrm{1}}{\mathrm{3}}\:\:,\:\:{tan}^{\mathrm{3}} \left(\frac{\theta}{\mathrm{2}}\right)={tan}\left({a}\right) \\ $$$$ \\ $$$${prove}\:{that} \\ $$$$ \\ $$$$\sqrt[{\mathrm{3}}]{{cos}^{\mathrm{2}} \left({a}\right)}\:+\:\sqrt[{\mathrm{3}}]{{sin}^{\mathrm{2}} \left({a}\right)}\:=\:\sqrt[{\mathrm{3}}]{\left(\frac{\mathrm{2}}{{m}}\right)^{\mathrm{2}} } \\ $$

  Pg 290      Pg 291      Pg 292      Pg 293      Pg 294      Pg 295      Pg 296      Pg 297      Pg 298      Pg 299   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com