Question and Answers Forum
All Questions Topic List
AlgebraQuestion and Answers: Page 29
Question Number 211103 Answers: 0 Comments: 0
Question Number 211043 Answers: 2 Comments: 0
Question Number 211029 Answers: 2 Comments: 0
Question Number 210996 Answers: 2 Comments: 0
Question Number 211004 Answers: 0 Comments: 0
Question Number 210987 Answers: 1 Comments: 0
Question Number 210971 Answers: 1 Comments: 0
Question Number 210961 Answers: 3 Comments: 0
Question Number 210958 Answers: 1 Comments: 2
Question Number 210934 Answers: 2 Comments: 0
$$\mathrm{If}\:\:\:\frac{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{ax}\:−\:\mathrm{18}}{\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{7x}\:+\:\mathrm{2b}}\:\:=\:\:\frac{\mathrm{x}\:−\:\mathrm{c}}{\mathrm{x}\:+\:\mathrm{5}} \\ $$$$\mathrm{Find}\:\:\:\boldsymbol{\mathrm{a}}\:+\:\boldsymbol{\mathrm{b}}\:+\:\boldsymbol{\mathrm{c}}\:=\:? \\ $$
Question Number 210922 Answers: 0 Comments: 0
Question Number 210919 Answers: 1 Comments: 0
Question Number 210906 Answers: 1 Comments: 0
$$\frac{\mathrm{19x}\:−\:\mathrm{x}^{\mathrm{2}} }{\mathrm{x}\:+\:\mathrm{1}}\:\centerdot\:\left(\mathrm{x}\:+\:\frac{\mathrm{19}\:−\:\mathrm{x}}{\mathrm{x}\:+\:\mathrm{1}}\right)\:=\:\mathrm{78} \\ $$$$\mathrm{find}:\:\:\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Question Number 210895 Answers: 4 Comments: 0
Question Number 210874 Answers: 0 Comments: 0
Question Number 210873 Answers: 0 Comments: 0
Question Number 210871 Answers: 0 Comments: 1
$$\mathrm{7}\left(\mathrm{x}−\mathrm{2}\right)\left(\sqrt{\mathrm{10}\:+\:\mathrm{x}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{7}−\mathrm{x}}\right)−\mathrm{15x}\:+\:\mathrm{6}\:=\:\mathrm{0} \\ $$$$\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Question Number 210870 Answers: 0 Comments: 1
$$\mathrm{8x}^{\mathrm{2}} \:−\:\mathrm{13x}\:+\:\mathrm{11}\:=\:\frac{\mathrm{2}}{\mathrm{x}}\:+\:\left(\mathrm{1}\:+\:\frac{\mathrm{3}}{\mathrm{x}}\right)\:\sqrt[{\mathrm{3}}]{\mathrm{3x}^{\mathrm{2}} −\mathrm{2}} \\ $$$$\boldsymbol{\mathrm{x}}\:=\:? \\ $$
Question Number 210868 Answers: 1 Comments: 5
$$\mathrm{let}\:\mathrm{p}\:,\mathrm{q}\:\mathrm{be}\:\mathrm{reals}\:\mathrm{such}\:\mathrm{that}\:\mathrm{p}>\mathrm{q}>\mathrm{0}\:\mathrm{define} \\ $$$$\mathrm{the}\:\mathrm{sequence}\:\left\{\mathrm{x}_{\mathrm{n}} \right\}\:\mathrm{where}\:\mathrm{x}_{\mathrm{1}} =\:\mathrm{p}+\mathrm{q}\:\mathrm{and} \\ $$$$\mathrm{x}_{\mathrm{n}} \:=\:\mathrm{x}_{\mathrm{1}} −\frac{\mathrm{pq}}{\mathrm{x}_{\mathrm{n}−\mathrm{1}} }\:\mathrm{for}\:\mathrm{n}\geqslant\mathrm{2}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\:\mathrm{then}\:\mathrm{x}_{\mathrm{n}} \:=\:?? \\ $$
Question Number 210858 Answers: 2 Comments: 0
$$\mathrm{Solve}\:\mathrm{The}\:\mathrm{Equation}: \\ $$$$\left(\mathrm{7x}+\mathrm{1}\right)\left(\mathrm{9x}+\mathrm{1}\right)\left(\mathrm{21x}+\mathrm{1}\right)\left(\mathrm{63x}+\mathrm{1}\right)=\:\frac{\mathrm{160}}{\mathrm{189}} \\ $$
Question Number 210843 Answers: 1 Comments: 0
Question Number 210842 Answers: 1 Comments: 0
Question Number 210851 Answers: 1 Comments: 1
Question Number 210840 Answers: 1 Comments: 0
$$ \\ $$Prove that if x, y are rational numbers satisfying the equation x^5 + y^5 = 2(x^2)(y^2) then 1 - xy is the square of rational number
Question Number 210824 Answers: 0 Comments: 0
Question Number 210836 Answers: 0 Comments: 0
Pg 24 Pg 25 Pg 26 Pg 27 Pg 28 Pg 29 Pg 30 Pg 31 Pg 32 Pg 33
Terms of Service
Privacy Policy
Contact: info@tinkutara.com