Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 29

Question Number 211617    Answers: 1   Comments: 0

Ato starts a business with $1,250.00. Ama joins the business later with a capital of 1,875.00. At the end of the first year, profits are shared equally between Ato and Ama. When did Ama join the business?

$$\mathrm{Ato}\:\:\mathrm{starts}\:\mathrm{a}\:\mathrm{business}\:\mathrm{with}\:\$\mathrm{1},\mathrm{250}.\mathrm{00}.\:\mathrm{Ama}\:\mathrm{joins}\:\mathrm{the}\:\mathrm{business} \\ $$$$\mathrm{later}\:\mathrm{with}\:\mathrm{a}\:\mathrm{capital}\:\mathrm{of}\:\mathrm{1},\mathrm{875}.\mathrm{00}.\:\mathrm{At}\:\mathrm{the}\: \\ $$$$\mathrm{end}\:\mathrm{of}\:\mathrm{the}\:\mathrm{first}\:\mathrm{year},\:\mathrm{profits}\:\mathrm{are}\:\mathrm{shared}\:\mathrm{equally} \\ $$$$\mathrm{between}\:\mathrm{Ato}\:\mathrm{and}\:\mathrm{Ama}.\:\mathrm{When}\:\mathrm{did}\:\mathrm{Ama} \\ $$$$\mathrm{join}\:\mathrm{the}\:\mathrm{business}? \\ $$

Question Number 211605    Answers: 1   Comments: 1

Let a_1 ,a_2 ,…a_n Is n real numbers. All fall in the interval (−1,1) ________________________ (1)Prove that: Π_(1≤i,j≤n) ((1+a_i a_j )/(1−a_i a_j ))≥1 (2) Determine the necessary andsufficient conditions forl equaity in the inequality.

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Let}\:\boldsymbol{{a}}_{\mathrm{1}} ,\boldsymbol{{a}}_{\mathrm{2}} ,\ldots\boldsymbol{{a}}_{\boldsymbol{{n}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{Is}\:\mathrm{n}\:\mathrm{real}\:\mathrm{numbers}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{All}\:\mathrm{fall}\:\mathrm{in}\:\mathrm{the}\:\mathrm{interval}\:\left(−\mathrm{1},\mathrm{1}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\left(\mathrm{1}\right)\mathrm{Prove}\:\mathrm{that}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{\mathrm{1}\leq\boldsymbol{{i}},\boldsymbol{{j}}\leq\boldsymbol{{n}}} {\prod}\frac{\mathrm{1}+\boldsymbol{{a}}_{\boldsymbol{{i}}} \boldsymbol{{a}}_{\boldsymbol{{j}}} }{\mathrm{1}−\boldsymbol{{a}}_{\boldsymbol{{i}}} \boldsymbol{{a}}_{\boldsymbol{{j}}} }\geq\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Determine}\:\mathrm{the}\:\mathrm{necessary}\: \\ $$$$\mathrm{andsufficient}\:\mathrm{conditions}\:\mathrm{forl} \\ $$$$\mathrm{equaity}\:\mathrm{in}\:\mathrm{the}\:\mathrm{inequality}. \\ $$$$ \\ $$

Question Number 211601    Answers: 0   Comments: 0

set 𝛂(2)^(1/3) ,ask Q(𝛂)Upper irreducible cubic equation: x^3 −3x+1=0 All the roots of

$$ \\ $$$$\:\:\:\:\:\:\:\mathrm{set}\:\boldsymbol{\alpha}\sqrt[{\mathrm{3}}]{\mathrm{2}},\mathrm{ask}\:\mathbb{Q}\left(\boldsymbol{\alpha}\right)\mathrm{Upper}\:\mathrm{irreducible}\:\mathrm{cubic}\:\mathrm{equation}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{3}\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{All}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of} \\ $$$$ \\ $$

Question Number 211598    Answers: 2   Comments: 0

{ ((x^2 −4x+3<0)),((((2x−1)/(x+2))≥1)) :}

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\boldsymbol{{x}}^{\mathrm{2}} −\mathrm{4}\boldsymbol{{x}}+\mathrm{3}<\mathrm{0}}\\{\frac{\mathrm{2}\boldsymbol{{x}}−\mathrm{1}}{\boldsymbol{{x}}+\mathrm{2}}\geq\mathrm{1}}\end{cases} \\ $$$$ \\ $$

Question Number 211597    Answers: 1   Comments: 0

2x^4 −4x^3 −22x^2 +24x+36=0

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2}\boldsymbol{{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{{x}}^{\mathrm{3}} −\mathrm{22}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{24}\boldsymbol{{x}}+\mathrm{36}=\mathrm{0} \\ $$$$ \\ $$

Question Number 211574    Answers: 1   Comments: 0

{ ((x^2 +y^2 =25)),((x+2y−3=0)) :}

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{25}}\\{\boldsymbol{{x}}+\mathrm{2}\boldsymbol{\mathrm{y}}−\mathrm{3}=\mathrm{0}}\end{cases} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$$$ \\ $$

Question Number 211548    Answers: 2   Comments: 0

{ ((2x^2 +3y^2 −6xy=12)),((x^2 −y^2 =4)) :}

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\begin{cases}{\mathrm{2}\boldsymbol{{x}}^{\mathrm{2}} +\mathrm{3}\boldsymbol{\mathrm{y}}^{\mathrm{2}} −\mathrm{6}\boldsymbol{{x}\mathrm{y}}=\mathrm{12}}\\{\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{4}}\end{cases} \\ $$$$ \\ $$

Question Number 211535    Answers: 1   Comments: 0

Question Number 211524    Answers: 1   Comments: 0

Solve for x: x^x = 4x

$$\mathrm{Solve}\:\mathrm{for}\:\mathrm{x}:\:\:\:\mathrm{x}^{\mathrm{x}} \:\:=\:\:\mathrm{4x} \\ $$

Question Number 211520    Answers: 2   Comments: 1

determiner les valeurs de pet q sachant que −2 et 3 sont les −2 et 3 sont les racines de l equation: 2pqz^2 −5z−4(p+q)=0

$$\mathrm{determiner}\:\mathrm{les}\:\mathrm{valeurs}\:\:\mathrm{de}\:\boldsymbol{\mathrm{p}}\mathrm{et}\:\boldsymbol{\mathrm{q}}\:\mathrm{sachant}\:\mathrm{que}\:−\mathrm{2}\:\mathrm{et}\:\mathrm{3}\:\mathrm{sont}\:\mathrm{les}\: \\ $$$$−\mathrm{2}\:\mathrm{et}\:\mathrm{3}\:\:\mathrm{sont}\:\mathrm{les}\:\mathrm{racines}\:\mathrm{de}\:\mathrm{l}\:\mathrm{equation}: \\ $$$$\mathrm{2}\boldsymbol{\mathrm{pqz}}^{\mathrm{2}} −\mathrm{5}\boldsymbol{\mathrm{z}}−\mathrm{4}\left(\boldsymbol{\mathrm{p}}+\boldsymbol{\mathrm{q}}\right)=\mathrm{0} \\ $$$$ \\ $$

Question Number 211509    Answers: 2   Comments: 0

Question Number 211485    Answers: 1   Comments: 0

If ((a − b)/c) + ((b − c)/a) + ((c + a)/b) = 1 and a − b + c ≠ 0 then prove that (1/a) = (1/b) + (1/c) .

$$\mathrm{If}\:\frac{{a}\:−\:{b}}{{c}}\:+\:\frac{{b}\:−\:{c}}{{a}}\:+\:\frac{{c}\:+\:{a}}{{b}}\:=\:\mathrm{1}\:\mathrm{and}\: \\ $$$${a}\:−\:{b}\:+\:{c}\:\neq\:\mathrm{0}\:\mathrm{then}\:\mathrm{prove}\:\mathrm{that} \\ $$$$\frac{\mathrm{1}}{{a}}\:=\:\frac{\mathrm{1}}{{b}}\:+\:\frac{\mathrm{1}}{{c}}\:. \\ $$

Question Number 211482    Answers: 0   Comments: 0

25^(((1/2) + log_(1/2) 27 + log_(25) 27)) =?

$$\:\mathrm{25}^{\left(\frac{\mathrm{1}}{\mathrm{2}}\:+\:{log}_{\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{27}\:+\:{log}_{\mathrm{25}} \mathrm{27}\right)} =? \\ $$

Question Number 211467    Answers: 1   Comments: 0

Solve the following equation ⌊ x ⌋ + (√(x −(√x) )) = ⌊ x+ (1/x) ⌋ ⌊ x ⌋ is floor of , x ,

$$ \\ $$$$\:\:\:{Solve}\:{the}\:{following}\:{equation} \\ $$$$ \\ $$$$\:\:\:\:\:\lfloor\:{x}\:\rfloor\:+\:\sqrt{{x}\:−\sqrt{{x}}\:}\:=\:\lfloor\:{x}+\:\frac{\mathrm{1}}{{x}}\:\rfloor \\ $$$$ \\ $$$$\:\:\:\:\:\lfloor\:{x}\:\rfloor\:{is}\:{floor}\:{of}\:,\:\:{x}\:\:,\: \\ $$

Question Number 211451    Answers: 0   Comments: 0

Question Number 211437    Answers: 3   Comments: 1

Question Number 211402    Answers: 1   Comments: 0

Question Number 211398    Answers: 1   Comments: 0

Question Number 211393    Answers: 3   Comments: 1

Question Number 211381    Answers: 2   Comments: 1

Question Number 211377    Answers: 0   Comments: 0

The irrational number ^3 (√(^3 (√2)−1)) is written as^3 (√p) +^3 (√q) +^3 (√r) what is p, q, r ?

$$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{irrational}}\:\boldsymbol{\mathrm{number}}\: \\ $$$$\:^{\mathrm{3}} \sqrt{\:^{\mathrm{3}} \sqrt{\mathrm{2}}−\mathrm{1}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{written}}\:\boldsymbol{\mathrm{as}}\:^{\mathrm{3}} \sqrt{\boldsymbol{\mathrm{p}}}\:+\:^{\mathrm{3}} \sqrt{\boldsymbol{\mathrm{q}}}\:+\:^{\mathrm{3}} \sqrt{\boldsymbol{\mathrm{r}}}\: \\ $$$$\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{p}},\:\boldsymbol{\mathrm{q}},\:\boldsymbol{\mathrm{r}}\:? \\ $$

Question Number 211374    Answers: 0   Comments: 0

Evaluate: Σ_(k=1) ^n (((sin (2^(k+4) θ))/(sin (2^k θ)))).

$$\mathrm{Evaluate}:\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\frac{\mathrm{sin}\:\left(\mathrm{2}^{{k}+\mathrm{4}} \theta\right)}{\mathrm{sin}\:\left(\mathrm{2}^{\mathrm{k}} \theta\right)}\right). \\ $$

Question Number 211373    Answers: 3   Comments: 0

Question Number 211331    Answers: 2   Comments: 0

x=(((√6)+2+(√3)+(√2))/( (√6)+(√3)−2−(√2))) y=(((√6)−(√3)−2+(√2))/( (√6)−(√3)+2−(√2))) x^5 −y^5 =?

$$\:\:\:\:\:\mathrm{x}=\frac{\sqrt{\mathrm{6}}+\mathrm{2}+\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{6}}+\sqrt{\mathrm{3}}−\mathrm{2}−\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\:\mathrm{y}=\frac{\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}−\mathrm{2}+\sqrt{\mathrm{2}}}{\:\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}+\mathrm{2}−\sqrt{\mathrm{2}}} \\ $$$$\:\:\:\mathrm{x}^{\mathrm{5}} −\mathrm{y}^{\mathrm{5}} \:=?\: \\ $$

Question Number 211330    Answers: 1   Comments: 0

Question Number 211311    Answers: 1   Comments: 0

Dterminer le nombre total des nombres de (3 chiffres)qui sont impair( et) divisibles par 9 compris entre 100 et 500.? formule si c est possible?

$$\boldsymbol{\mathrm{Dterminer}}\:\boldsymbol{\mathrm{le}}\:\boldsymbol{\mathrm{nombre}}\:\boldsymbol{\mathrm{total}}\:\:\boldsymbol{\mathrm{des}}\:\boldsymbol{\mathrm{nombres}}\: \\ $$$$\boldsymbol{\mathrm{de}}\:\left(\mathrm{3}\:\boldsymbol{\mathrm{chiffres}}\right)\boldsymbol{\mathrm{qui}}\:\boldsymbol{\mathrm{sont}}\:\boldsymbol{\mathrm{impair}}\left(\:\boldsymbol{\mathrm{et}}\right)\:\boldsymbol{\mathrm{divisibles}}\: \\ $$$$\boldsymbol{\mathrm{par}}\:\mathrm{9}\:\:\:\boldsymbol{\mathrm{compris}}\:\boldsymbol{\mathrm{entre}}\:\mathrm{100}\:\boldsymbol{\mathrm{et}}\:\mathrm{500}.? \\ $$$$\boldsymbol{\mathrm{formule}}\:\boldsymbol{\mathrm{si}}\:\boldsymbol{\mathrm{c}}\:\boldsymbol{\mathrm{est}}\:\boldsymbol{\mathrm{possible}}? \\ $$$$ \\ $$

  Pg 24      Pg 25      Pg 26      Pg 27      Pg 28      Pg 29      Pg 30      Pg 31      Pg 32      Pg 33   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com