Question and Answers Forum

All Questions   Topic List

AlgebraQuestion and Answers: Page 289

Question Number 76714    Answers: 1   Comments: 0

If y=(√(tan x+(√(tan x+(√(tan x+....∞)))))) prove that (dy/dx)=((sec^2 x)/(2y−1))

$${If}\:{y}=\sqrt{\mathrm{tan}\:{x}+\sqrt{\mathrm{tan}\:{x}+\sqrt{\mathrm{tan}\:{x}+....\infty}}}\: \\ $$$${prove}\:{that} \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{sec}\:^{\mathrm{2}} {x}}{\mathrm{2}{y}−\mathrm{1}} \\ $$

Question Number 76713    Answers: 0   Comments: 0

If cos y=xcos (a+y),show that (dy/dx)=((cos^2 (a+y))/(sin a))

$${If}\:\mathrm{cos}\:{y}={x}\mathrm{cos}\:\left({a}+{y}\right),{show} \\ $$$${that}\:\frac{{dy}}{{dx}}=\frac{\mathrm{cos}\:^{\mathrm{2}} \left({a}+{y}\right)}{\mathrm{sin}\:{a}} \\ $$

Question Number 76711    Answers: 1   Comments: 0

Question Number 76700    Answers: 1   Comments: 2

Question Number 76694    Answers: 0   Comments: 0

Question Number 76622    Answers: 2   Comments: 0

Find (a.b.c) for equation acos 2x+bsin^2 x+c=0 is satisfied by every x

$$\mathrm{Find}\:\left(\mathrm{a}.\mathrm{b}.\mathrm{c}\right)\:\mathrm{for}\:\mathrm{equation}\:\mathrm{acos}\:\mathrm{2x}+\mathrm{bsin}\:^{\mathrm{2}} \mathrm{x}+\mathrm{c}=\mathrm{0}\:\mathrm{is}\:\mathrm{satisfied}\:\mathrm{by}\:\mathrm{every}\:\mathrm{x} \\ $$

Question Number 76587    Answers: 1   Comments: 3

Question Number 76586    Answers: 1   Comments: 7

Question Number 76531    Answers: 1   Comments: 4

what is a and b such that a+b = a×b and a+b =a/b ?

$${what}\:{is}\:{a}\:{and}\:{b}\:{such}\:{that}\:{a}+{b}\:=\:{a}×{b}\: \\ $$$${and}\:{a}+{b}\:={a}/{b}\:? \\ $$

Question Number 76438    Answers: 1   Comments: 0

given N =(4/(((√5)+1)(5^(1/4) +1)(5^(1/8) +1)(5^(1/(16)) +1))) find value of (N+1)^(48) .

$${given}\:{N}\:=\frac{\mathrm{4}}{\left(\sqrt{\mathrm{5}}+\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{4}}} +\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{8}}} +\mathrm{1}\right)\left(\mathrm{5}^{\frac{\mathrm{1}}{\mathrm{16}}} +\mathrm{1}\right)} \\ $$$${find}\:{value}\:{of}\:\left({N}+\mathrm{1}\right)^{\mathrm{48}} . \\ $$

Question Number 76436    Answers: 2   Comments: 0

Question Number 76431    Answers: 1   Comments: 1

how to find x^(2048) + x^(−2048) if x+x^(−1) =(((√5)+1)/2)

$${how}\:{to}\:{find}\:{x}^{\mathrm{2048}} \:+\:{x}^{−\mathrm{2048}} \\ $$$${if}\:\:{x}+{x}^{−\mathrm{1}} =\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}} \\ $$

Question Number 76428    Answers: 2   Comments: 0

Question Number 76407    Answers: 0   Comments: 0

Question Number 76397    Answers: 0   Comments: 2

solve for z∈C [z=a+bi; z^ =a−bi; r∈R] (√(r^2 −z^2 ))=z^ (√(r^2 +z^2 ))=z^

$$\mathrm{solve}\:\mathrm{for}\:{z}\in\mathbb{C} \\ $$$$\left[{z}={a}+{b}\mathrm{i};\:\bar {{z}}={a}−{b}\mathrm{i};\:{r}\in\mathbb{R}\right] \\ $$$$\sqrt{{r}^{\mathrm{2}} −{z}^{\mathrm{2}} }=\bar {{z}} \\ $$$$\sqrt{{r}^{\mathrm{2}} +{z}^{\mathrm{2}} }=\bar {{z}} \\ $$

Question Number 76340    Answers: 3   Comments: 1

Question Number 76307    Answers: 1   Comments: 0

Question Number 76290    Answers: 1   Comments: 1

how to prove x^y +y^x ≥1 , x,y ∈R x,y > 0

$$\mathrm{how}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{x}^{\mathrm{y}} \:+\mathrm{y}^{\mathrm{x}} \:\geqslant\mathrm{1}\:,\:\mathrm{x},\mathrm{y}\:\in\mathbb{R} \\ $$$$\mathrm{x},\mathrm{y}\:>\:\mathrm{0} \\ $$

Question Number 76277    Answers: 1   Comments: 0

Question Number 76246    Answers: 2   Comments: 0

how to solving x^3 +y^(3 ) =4 and x×y =1?

$$\mathrm{how}\:\mathrm{to}\:\mathrm{solving}\:\mathrm{x}^{\mathrm{3}} \:+\mathrm{y}^{\mathrm{3}\:} \:=\mathrm{4}\:\mathrm{and}\: \\ $$$$\mathrm{x}×\mathrm{y}\:=\mathrm{1}? \\ $$

Question Number 76214    Answers: 3   Comments: 0

x^2 +2x−9+(9/((x+1)^2 ))=0 please

$$\mathrm{x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{9}+\frac{\mathrm{9}}{\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{0} \\ $$$$\mathrm{please} \\ $$

Question Number 76213    Answers: 1   Comments: 0

((1/(64))×5^(−3) )^(−(1/3))

$$\left(\frac{\mathrm{1}}{\mathrm{64}}×\mathrm{5}^{−\mathrm{3}} \right)^{−\frac{\mathrm{1}}{\mathrm{3}}} \\ $$

Question Number 76207    Answers: 4   Comments: 0

if a_1 =1 and a_(n+1) =3a_n +n^2 find a_n =?

$${if}\:{a}_{\mathrm{1}} =\mathrm{1}\:{and}\:{a}_{{n}+\mathrm{1}} =\mathrm{3}{a}_{{n}} +{n}^{\mathrm{2}} \\ $$$${find}\:{a}_{{n}} =? \\ $$

Question Number 76176    Answers: 0   Comments: 4

Question Number 76171    Answers: 0   Comments: 0

Question Number 76169    Answers: 2   Comments: 0

  Pg 284      Pg 285      Pg 286      Pg 287      Pg 288      Pg 289      Pg 290      Pg 291      Pg 292      Pg 293   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com